Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-18x+9=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 9}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 9}}{2}
Square -18.
x=\frac{-\left(-18\right)±\sqrt{324-36}}{2}
Multiply -4 times 9.
x=\frac{-\left(-18\right)±\sqrt{288}}{2}
Add 324 to -36.
x=\frac{-\left(-18\right)±12\sqrt{2}}{2}
Take the square root of 288.
x=\frac{18±12\sqrt{2}}{2}
The opposite of -18 is 18.
x=\frac{12\sqrt{2}+18}{2}
Now solve the equation x=\frac{18±12\sqrt{2}}{2} when ± is plus. Add 18 to 12\sqrt{2}.
x=6\sqrt{2}+9
Divide 18+12\sqrt{2} by 2.
x=\frac{18-12\sqrt{2}}{2}
Now solve the equation x=\frac{18±12\sqrt{2}}{2} when ± is minus. Subtract 12\sqrt{2} from 18.
x=9-6\sqrt{2}
Divide 18-12\sqrt{2} by 2.
x^{2}-18x+9=\left(x-\left(6\sqrt{2}+9\right)\right)\left(x-\left(9-6\sqrt{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 9+6\sqrt{2} for x_{1} and 9-6\sqrt{2} for x_{2}.