Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-180x+3870=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-180\right)±\sqrt{\left(-180\right)^{2}-4\times 3870}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-180\right)±\sqrt{32400-4\times 3870}}{2}
Square -180.
x=\frac{-\left(-180\right)±\sqrt{32400-15480}}{2}
Multiply -4 times 3870.
x=\frac{-\left(-180\right)±\sqrt{16920}}{2}
Add 32400 to -15480.
x=\frac{-\left(-180\right)±6\sqrt{470}}{2}
Take the square root of 16920.
x=\frac{180±6\sqrt{470}}{2}
The opposite of -180 is 180.
x=\frac{6\sqrt{470}+180}{2}
Now solve the equation x=\frac{180±6\sqrt{470}}{2} when ± is plus. Add 180 to 6\sqrt{470}.
x=3\sqrt{470}+90
Divide 180+6\sqrt{470} by 2.
x=\frac{180-6\sqrt{470}}{2}
Now solve the equation x=\frac{180±6\sqrt{470}}{2} when ± is minus. Subtract 6\sqrt{470} from 180.
x=90-3\sqrt{470}
Divide 180-6\sqrt{470} by 2.
x^{2}-180x+3870=\left(x-\left(3\sqrt{470}+90\right)\right)\left(x-\left(90-3\sqrt{470}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 90+3\sqrt{470} for x_{1} and 90-3\sqrt{470} for x_{2}.