Factor
\left(x-\frac{15-\sqrt{197}}{2}\right)\left(x-\frac{\sqrt{197}+15}{2}\right)
Evaluate
x^{2}-15x+7
Graph
Share
Copied to clipboard
x^{2}-15x+7=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 7}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-15\right)±\sqrt{225-4\times 7}}{2}
Square -15.
x=\frac{-\left(-15\right)±\sqrt{225-28}}{2}
Multiply -4 times 7.
x=\frac{-\left(-15\right)±\sqrt{197}}{2}
Add 225 to -28.
x=\frac{15±\sqrt{197}}{2}
The opposite of -15 is 15.
x=\frac{\sqrt{197}+15}{2}
Now solve the equation x=\frac{15±\sqrt{197}}{2} when ± is plus. Add 15 to \sqrt{197}.
x=\frac{15-\sqrt{197}}{2}
Now solve the equation x=\frac{15±\sqrt{197}}{2} when ± is minus. Subtract \sqrt{197} from 15.
x^{2}-15x+7=\left(x-\frac{\sqrt{197}+15}{2}\right)\left(x-\frac{15-\sqrt{197}}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{15+\sqrt{197}}{2} for x_{1} and \frac{15-\sqrt{197}}{2} for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}