Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-15x+36=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 1\times 36}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -15 for b, and 36 for c in the quadratic formula.
x=\frac{15±9}{2}
Do the calculations.
x=12 x=3
Solve the equation x=\frac{15±9}{2} when ± is plus and when ± is minus.
\left(x-12\right)\left(x-3\right)\geq 0
Rewrite the inequality by using the obtained solutions.
x-12\leq 0 x-3\leq 0
For the product to be ≥0, x-12 and x-3 have to be both ≤0 or both ≥0. Consider the case when x-12 and x-3 are both ≤0.
x\leq 3
The solution satisfying both inequalities is x\leq 3.
x-3\geq 0 x-12\geq 0
Consider the case when x-12 and x-3 are both ≥0.
x\geq 12
The solution satisfying both inequalities is x\geq 12.
x\leq 3\text{; }x\geq 12
The final solution is the union of the obtained solutions.