Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-14x+19=4
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x^{2}-14x+19-4=4-4
Subtract 4 from both sides of the equation.
x^{2}-14x+19-4=0
Subtracting 4 from itself leaves 0.
x^{2}-14x+15=0
Subtract 4 from 19.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 15}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -14 for b, and 15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 15}}{2}
Square -14.
x=\frac{-\left(-14\right)±\sqrt{196-60}}{2}
Multiply -4 times 15.
x=\frac{-\left(-14\right)±\sqrt{136}}{2}
Add 196 to -60.
x=\frac{-\left(-14\right)±2\sqrt{34}}{2}
Take the square root of 136.
x=\frac{14±2\sqrt{34}}{2}
The opposite of -14 is 14.
x=\frac{2\sqrt{34}+14}{2}
Now solve the equation x=\frac{14±2\sqrt{34}}{2} when ± is plus. Add 14 to 2\sqrt{34}.
x=\sqrt{34}+7
Divide 14+2\sqrt{34} by 2.
x=\frac{14-2\sqrt{34}}{2}
Now solve the equation x=\frac{14±2\sqrt{34}}{2} when ± is minus. Subtract 2\sqrt{34} from 14.
x=7-\sqrt{34}
Divide 14-2\sqrt{34} by 2.
x=\sqrt{34}+7 x=7-\sqrt{34}
The equation is now solved.
x^{2}-14x+19=4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-14x+19-19=4-19
Subtract 19 from both sides of the equation.
x^{2}-14x=4-19
Subtracting 19 from itself leaves 0.
x^{2}-14x=-15
Subtract 19 from 4.
x^{2}-14x+\left(-7\right)^{2}=-15+\left(-7\right)^{2}
Divide -14, the coefficient of the x term, by 2 to get -7. Then add the square of -7 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-14x+49=-15+49
Square -7.
x^{2}-14x+49=34
Add -15 to 49.
\left(x-7\right)^{2}=34
Factor x^{2}-14x+49. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-7\right)^{2}}=\sqrt{34}
Take the square root of both sides of the equation.
x-7=\sqrt{34} x-7=-\sqrt{34}
Simplify.
x=\sqrt{34}+7 x=7-\sqrt{34}
Add 7 to both sides of the equation.