Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-120x+3600=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-120\right)±\sqrt{\left(-120\right)^{2}-4\times 3600}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -120 for b, and 3600 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-120\right)±\sqrt{14400-4\times 3600}}{2}
Square -120.
x=\frac{-\left(-120\right)±\sqrt{14400-14400}}{2}
Multiply -4 times 3600.
x=\frac{-\left(-120\right)±\sqrt{0}}{2}
Add 14400 to -14400.
x=-\frac{-120}{2}
Take the square root of 0.
x=\frac{120}{2}
The opposite of -120 is 120.
x=60
Divide 120 by 2.
x^{2}-120x+3600=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\left(x-60\right)^{2}=0
Factor x^{2}-120x+3600. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-60\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-60=0 x-60=0
Simplify.
x=60 x=60
Add 60 to both sides of the equation.
x=60
The equation is now solved. Solutions are the same.