Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-11 ab=1\left(-26\right)=-26
Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx-26. To find a and b, set up a system to be solved.
1,-26 2,-13
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -26.
1-26=-25 2-13=-11
Calculate the sum for each pair.
a=-13 b=2
The solution is the pair that gives sum -11.
\left(x^{2}-13x\right)+\left(2x-26\right)
Rewrite x^{2}-11x-26 as \left(x^{2}-13x\right)+\left(2x-26\right).
x\left(x-13\right)+2\left(x-13\right)
Factor out x in the first and 2 in the second group.
\left(x-13\right)\left(x+2\right)
Factor out common term x-13 by using distributive property.
x^{2}-11x-26=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-26\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-11\right)±\sqrt{121-4\left(-26\right)}}{2}
Square -11.
x=\frac{-\left(-11\right)±\sqrt{121+104}}{2}
Multiply -4 times -26.
x=\frac{-\left(-11\right)±\sqrt{225}}{2}
Add 121 to 104.
x=\frac{-\left(-11\right)±15}{2}
Take the square root of 225.
x=\frac{11±15}{2}
The opposite of -11 is 11.
x=\frac{26}{2}
Now solve the equation x=\frac{11±15}{2} when ± is plus. Add 11 to 15.
x=13
Divide 26 by 2.
x=-\frac{4}{2}
Now solve the equation x=\frac{11±15}{2} when ± is minus. Subtract 15 from 11.
x=-2
Divide -4 by 2.
x^{2}-11x-26=\left(x-13\right)\left(x-\left(-2\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 13 for x_{1} and -2 for x_{2}.
x^{2}-11x-26=\left(x-13\right)\left(x+2\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.