Factor
\left(x-6\right)\left(x-5\right)
Evaluate
\left(x-6\right)\left(x-5\right)
Graph
Share
Copied to clipboard
a+b=-11 ab=1\times 30=30
Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx+30. To find a and b, set up a system to be solved.
-1,-30 -2,-15 -3,-10 -5,-6
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 30.
-1-30=-31 -2-15=-17 -3-10=-13 -5-6=-11
Calculate the sum for each pair.
a=-6 b=-5
The solution is the pair that gives sum -11.
\left(x^{2}-6x\right)+\left(-5x+30\right)
Rewrite x^{2}-11x+30 as \left(x^{2}-6x\right)+\left(-5x+30\right).
x\left(x-6\right)-5\left(x-6\right)
Factor out x in the first and -5 in the second group.
\left(x-6\right)\left(x-5\right)
Factor out common term x-6 by using distributive property.
x^{2}-11x+30=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 30}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 30}}{2}
Square -11.
x=\frac{-\left(-11\right)±\sqrt{121-120}}{2}
Multiply -4 times 30.
x=\frac{-\left(-11\right)±\sqrt{1}}{2}
Add 121 to -120.
x=\frac{-\left(-11\right)±1}{2}
Take the square root of 1.
x=\frac{11±1}{2}
The opposite of -11 is 11.
x=\frac{12}{2}
Now solve the equation x=\frac{11±1}{2} when ± is plus. Add 11 to 1.
x=6
Divide 12 by 2.
x=\frac{10}{2}
Now solve the equation x=\frac{11±1}{2} when ± is minus. Subtract 1 from 11.
x=5
Divide 10 by 2.
x^{2}-11x+30=\left(x-6\right)\left(x-5\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 6 for x_{1} and 5 for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}