Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-114514x-1919810=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-114514\right)±\sqrt{\left(-114514\right)^{2}-4\left(-1919810\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-114514\right)±\sqrt{13113456196-4\left(-1919810\right)}}{2}
Square -114514.
x=\frac{-\left(-114514\right)±\sqrt{13113456196+7679240}}{2}
Multiply -4 times -1919810.
x=\frac{-\left(-114514\right)±\sqrt{13121135436}}{2}
Add 13113456196 to 7679240.
x=\frac{-\left(-114514\right)±2\sqrt{3280283859}}{2}
Take the square root of 13121135436.
x=\frac{114514±2\sqrt{3280283859}}{2}
The opposite of -114514 is 114514.
x=\frac{2\sqrt{3280283859}+114514}{2}
Now solve the equation x=\frac{114514±2\sqrt{3280283859}}{2} when ± is plus. Add 114514 to 2\sqrt{3280283859}.
x=\sqrt{3280283859}+57257
Divide 114514+2\sqrt{3280283859} by 2.
x=\frac{114514-2\sqrt{3280283859}}{2}
Now solve the equation x=\frac{114514±2\sqrt{3280283859}}{2} when ± is minus. Subtract 2\sqrt{3280283859} from 114514.
x=57257-\sqrt{3280283859}
Divide 114514-2\sqrt{3280283859} by 2.
x^{2}-114514x-1919810=\left(x-\left(\sqrt{3280283859}+57257\right)\right)\left(x-\left(57257-\sqrt{3280283859}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 57257+\sqrt{3280283859} for x_{1} and 57257-\sqrt{3280283859} for x_{2}.