Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-10x-400=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-400\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -10 for b, and -400 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\left(-400\right)}}{2}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100+1600}}{2}
Multiply -4 times -400.
x=\frac{-\left(-10\right)±\sqrt{1700}}{2}
Add 100 to 1600.
x=\frac{-\left(-10\right)±10\sqrt{17}}{2}
Take the square root of 1700.
x=\frac{10±10\sqrt{17}}{2}
The opposite of -10 is 10.
x=\frac{10\sqrt{17}+10}{2}
Now solve the equation x=\frac{10±10\sqrt{17}}{2} when ± is plus. Add 10 to 10\sqrt{17}.
x=5\sqrt{17}+5
Divide 10+10\sqrt{17} by 2.
x=\frac{10-10\sqrt{17}}{2}
Now solve the equation x=\frac{10±10\sqrt{17}}{2} when ± is minus. Subtract 10\sqrt{17} from 10.
x=5-5\sqrt{17}
Divide 10-10\sqrt{17} by 2.
x=5\sqrt{17}+5 x=5-5\sqrt{17}
The equation is now solved.
x^{2}-10x-400=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-10x-400-\left(-400\right)=-\left(-400\right)
Add 400 to both sides of the equation.
x^{2}-10x=-\left(-400\right)
Subtracting -400 from itself leaves 0.
x^{2}-10x=400
Subtract -400 from 0.
x^{2}-10x+\left(-5\right)^{2}=400+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-10x+25=400+25
Square -5.
x^{2}-10x+25=425
Add 400 to 25.
\left(x-5\right)^{2}=425
Factor x^{2}-10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{425}
Take the square root of both sides of the equation.
x-5=5\sqrt{17} x-5=-5\sqrt{17}
Simplify.
x=5\sqrt{17}+5 x=5-5\sqrt{17}
Add 5 to both sides of the equation.