Solve for x
x=2.8
x=-1.2
Graph
Share
Copied to clipboard
x^{2}-1.6x-3.36=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1.6\right)±\sqrt{\left(-1.6\right)^{2}-4\left(-3.36\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -1.6 for b, and -3.36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1.6\right)±\sqrt{2.56-4\left(-3.36\right)}}{2}
Square -1.6 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-1.6\right)±\sqrt{\frac{64+336}{25}}}{2}
Multiply -4 times -3.36.
x=\frac{-\left(-1.6\right)±\sqrt{16}}{2}
Add 2.56 to 13.44 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-1.6\right)±4}{2}
Take the square root of 16.
x=\frac{1.6±4}{2}
The opposite of -1.6 is 1.6.
x=\frac{5.6}{2}
Now solve the equation x=\frac{1.6±4}{2} when ± is plus. Add 1.6 to 4.
x=2.8
Divide 5.6 by 2.
x=-\frac{2.4}{2}
Now solve the equation x=\frac{1.6±4}{2} when ± is minus. Subtract 4 from 1.6.
x=-1.2
Divide -2.4 by 2.
x=2.8 x=-1.2
The equation is now solved.
x^{2}-1.6x-3.36=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-1.6x-3.36-\left(-3.36\right)=-\left(-3.36\right)
Add 3.36 to both sides of the equation.
x^{2}-1.6x=-\left(-3.36\right)
Subtracting -3.36 from itself leaves 0.
x^{2}-1.6x=3.36
Subtract -3.36 from 0.
x^{2}-1.6x+\left(-0.8\right)^{2}=3.36+\left(-0.8\right)^{2}
Divide -1.6, the coefficient of the x term, by 2 to get -0.8. Then add the square of -0.8 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-1.6x+0.64=\frac{84+16}{25}
Square -0.8 by squaring both the numerator and the denominator of the fraction.
x^{2}-1.6x+0.64=4
Add 3.36 to 0.64 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-0.8\right)^{2}=4
Factor x^{2}-1.6x+0.64. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-0.8\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
x-0.8=2 x-0.8=-2
Simplify.
x=2.8 x=-1.2
Add 0.8 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}