Solve for x (complex solution)
x=\frac{3+i\times 3\sqrt{3}}{5}\approx 0.6+1.039230485i
x=\frac{-i\times 3\sqrt{3}+3}{5}\approx 0.6-1.039230485i
Graph
Share
Copied to clipboard
2x^{2}-1.2x+1.2^{2}=x^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-1.2x+1.44=x^{2}
Calculate 1.2 to the power of 2 and get 1.44.
2x^{2}-1.2x+1.44-x^{2}=0
Subtract x^{2} from both sides.
x^{2}-1.2x+1.44=0
Combine 2x^{2} and -x^{2} to get x^{2}.
x=\frac{-\left(-1.2\right)±\sqrt{\left(-1.2\right)^{2}-4\times 1.44}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -1.2 for b, and 1.44 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1.2\right)±\sqrt{1.44-4\times 1.44}}{2}
Square -1.2 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-1.2\right)±\sqrt{\frac{36-144}{25}}}{2}
Multiply -4 times 1.44.
x=\frac{-\left(-1.2\right)±\sqrt{-4.32}}{2}
Add 1.44 to -5.76 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-1.2\right)±\frac{6\sqrt{3}i}{5}}{2}
Take the square root of -4.32.
x=\frac{1.2±\frac{6\sqrt{3}i}{5}}{2}
The opposite of -1.2 is 1.2.
x=\frac{6+6\sqrt{3}i}{2\times 5}
Now solve the equation x=\frac{1.2±\frac{6\sqrt{3}i}{5}}{2} when ± is plus. Add 1.2 to \frac{6i\sqrt{3}}{5}.
x=\frac{3+3\sqrt{3}i}{5}
Divide \frac{6+6i\sqrt{3}}{5} by 2.
x=\frac{-6\sqrt{3}i+6}{2\times 5}
Now solve the equation x=\frac{1.2±\frac{6\sqrt{3}i}{5}}{2} when ± is minus. Subtract \frac{6i\sqrt{3}}{5} from 1.2.
x=\frac{-3\sqrt{3}i+3}{5}
Divide \frac{6-6i\sqrt{3}}{5} by 2.
x=\frac{3+3\sqrt{3}i}{5} x=\frac{-3\sqrt{3}i+3}{5}
The equation is now solved.
2x^{2}-1.2x+1.2^{2}=x^{2}
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-1.2x+1.44=x^{2}
Calculate 1.2 to the power of 2 and get 1.44.
2x^{2}-1.2x+1.44-x^{2}=0
Subtract x^{2} from both sides.
x^{2}-1.2x+1.44=0
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}-1.2x=-1.44
Subtract 1.44 from both sides. Anything subtracted from zero gives its negation.
x^{2}-1.2x+\left(-0.6\right)^{2}=-1.44+\left(-0.6\right)^{2}
Divide -1.2, the coefficient of the x term, by 2 to get -0.6. Then add the square of -0.6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-1.2x+0.36=\frac{-36+9}{25}
Square -0.6 by squaring both the numerator and the denominator of the fraction.
x^{2}-1.2x+0.36=-1.08
Add -1.44 to 0.36 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-0.6\right)^{2}=-1.08
Factor x^{2}-1.2x+0.36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-0.6\right)^{2}}=\sqrt{-1.08}
Take the square root of both sides of the equation.
x-0.6=\frac{3\sqrt{3}i}{5} x-0.6=-\frac{3\sqrt{3}i}{5}
Simplify.
x=\frac{3+3\sqrt{3}i}{5} x=\frac{-3\sqrt{3}i+3}{5}
Add 0.6 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}