Solve for x
x\neq 0
Graph
Share
Copied to clipboard
x^{2}-1=\frac{x^{4}-x^{2}}{x^{2\times 2-\frac{4}{2}}}
Divide 4 by 2 to get 2.
x^{2}-1=\frac{x^{4}-x^{2}}{x^{4-\frac{4}{2}}}
Multiply 2 and 2 to get 4.
x^{2}-1=\frac{x^{4}-x^{2}}{x^{4-2}}
Divide 4 by 2 to get 2.
x^{2}-1=\frac{x^{4}-x^{2}}{x^{2}}
Subtract 2 from 4 to get 2.
x^{2}-1-\frac{x^{4}-x^{2}}{x^{2}}=0
Subtract \frac{x^{4}-x^{2}}{x^{2}} from both sides.
\frac{\left(x^{2}-1\right)x^{2}}{x^{2}}-\frac{x^{4}-x^{2}}{x^{2}}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2}-1 times \frac{x^{2}}{x^{2}}.
\frac{\left(x^{2}-1\right)x^{2}-\left(x^{4}-x^{2}\right)}{x^{2}}=0
Since \frac{\left(x^{2}-1\right)x^{2}}{x^{2}} and \frac{x^{4}-x^{2}}{x^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{4}-x^{2}-x^{4}+x^{2}}{x^{2}}=0
Do the multiplications in \left(x^{2}-1\right)x^{2}-\left(x^{4}-x^{2}\right).
\frac{0}{x^{2}}=0
Combine like terms in x^{4}-x^{2}-x^{4}+x^{2}.
0=0
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x^{2}.
x\in \mathrm{R}
This is true for any x.
x\in \mathrm{R}\setminus 0
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}