Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for y (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-y^{2}=x^{2}-y^{2}
Consider \left(x-y\right)\left(x+y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{2}-y^{2}-x^{2}=-y^{2}
Subtract x^{2} from both sides.
-y^{2}=-y^{2}
Combine x^{2} and -x^{2} to get 0.
y^{2}=y^{2}
Cancel out -1 on both sides.
\text{true}
Reorder the terms.
x\in \mathrm{C}
This is true for any x.
x^{2}-y^{2}=x^{2}-y^{2}
Consider \left(x-y\right)\left(x+y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{2}-y^{2}+y^{2}=x^{2}
Add y^{2} to both sides.
x^{2}=x^{2}
Combine -y^{2} and y^{2} to get 0.
\text{true}
Reorder the terms.
y\in \mathrm{C}
This is true for any y.
x^{2}-y^{2}=x^{2}-y^{2}
Consider \left(x-y\right)\left(x+y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{2}-y^{2}-x^{2}=-y^{2}
Subtract x^{2} from both sides.
-y^{2}=-y^{2}
Combine x^{2} and -x^{2} to get 0.
y^{2}=y^{2}
Cancel out -1 on both sides.
\text{true}
Reorder the terms.
x\in \mathrm{R}
This is true for any x.
x^{2}-y^{2}=x^{2}-y^{2}
Consider \left(x-y\right)\left(x+y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{2}-y^{2}+y^{2}=x^{2}
Add y^{2} to both sides.
x^{2}=x^{2}
Combine -y^{2} and y^{2} to get 0.
\text{true}
Reorder the terms.
y\in \mathrm{R}
This is true for any y.