Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-\frac{7}{4}x-5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{7}{4}\right)±\sqrt{\left(-\frac{7}{4}\right)^{2}-4\left(-5\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -\frac{7}{4} for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{7}{4}\right)±\sqrt{\frac{49}{16}-4\left(-5\right)}}{2}
Square -\frac{7}{4} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{7}{4}\right)±\sqrt{\frac{49}{16}+20}}{2}
Multiply -4 times -5.
x=\frac{-\left(-\frac{7}{4}\right)±\sqrt{\frac{369}{16}}}{2}
Add \frac{49}{16} to 20.
x=\frac{-\left(-\frac{7}{4}\right)±\frac{3\sqrt{41}}{4}}{2}
Take the square root of \frac{369}{16}.
x=\frac{\frac{7}{4}±\frac{3\sqrt{41}}{4}}{2}
The opposite of -\frac{7}{4} is \frac{7}{4}.
x=\frac{3\sqrt{41}+7}{2\times 4}
Now solve the equation x=\frac{\frac{7}{4}±\frac{3\sqrt{41}}{4}}{2} when ± is plus. Add \frac{7}{4} to \frac{3\sqrt{41}}{4}.
x=\frac{3\sqrt{41}+7}{8}
Divide \frac{7+3\sqrt{41}}{4} by 2.
x=\frac{7-3\sqrt{41}}{2\times 4}
Now solve the equation x=\frac{\frac{7}{4}±\frac{3\sqrt{41}}{4}}{2} when ± is minus. Subtract \frac{3\sqrt{41}}{4} from \frac{7}{4}.
x=\frac{7-3\sqrt{41}}{8}
Divide \frac{7-3\sqrt{41}}{4} by 2.
x=\frac{3\sqrt{41}+7}{8} x=\frac{7-3\sqrt{41}}{8}
The equation is now solved.
x^{2}-\frac{7}{4}x-5=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-\frac{7}{4}x-5-\left(-5\right)=-\left(-5\right)
Add 5 to both sides of the equation.
x^{2}-\frac{7}{4}x=-\left(-5\right)
Subtracting -5 from itself leaves 0.
x^{2}-\frac{7}{4}x=5
Subtract -5 from 0.
x^{2}-\frac{7}{4}x+\left(-\frac{7}{8}\right)^{2}=5+\left(-\frac{7}{8}\right)^{2}
Divide -\frac{7}{4}, the coefficient of the x term, by 2 to get -\frac{7}{8}. Then add the square of -\frac{7}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{4}x+\frac{49}{64}=5+\frac{49}{64}
Square -\frac{7}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{4}x+\frac{49}{64}=\frac{369}{64}
Add 5 to \frac{49}{64}.
\left(x-\frac{7}{8}\right)^{2}=\frac{369}{64}
Factor x^{2}-\frac{7}{4}x+\frac{49}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{8}\right)^{2}}=\sqrt{\frac{369}{64}}
Take the square root of both sides of the equation.
x-\frac{7}{8}=\frac{3\sqrt{41}}{8} x-\frac{7}{8}=-\frac{3\sqrt{41}}{8}
Simplify.
x=\frac{3\sqrt{41}+7}{8} x=\frac{7-3\sqrt{41}}{8}
Add \frac{7}{8} to both sides of the equation.