Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-\frac{49}{4}=9-\left(x^{2}-7x+\frac{49}{4}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-\frac{7}{2}\right)^{2}.
x^{2}-\frac{49}{4}=9-x^{2}+7x-\frac{49}{4}
To find the opposite of x^{2}-7x+\frac{49}{4}, find the opposite of each term.
x^{2}-\frac{49}{4}=-\frac{13}{4}-x^{2}+7x
Subtract \frac{49}{4} from 9 to get -\frac{13}{4}.
x^{2}-\frac{49}{4}-\left(-\frac{13}{4}\right)=-x^{2}+7x
Subtract -\frac{13}{4} from both sides.
x^{2}-\frac{49}{4}+\frac{13}{4}=-x^{2}+7x
The opposite of -\frac{13}{4} is \frac{13}{4}.
x^{2}-\frac{49}{4}+\frac{13}{4}+x^{2}=7x
Add x^{2} to both sides.
x^{2}-9+x^{2}=7x
Add -\frac{49}{4} and \frac{13}{4} to get -9.
2x^{2}-9=7x
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-9-7x=0
Subtract 7x from both sides.
2x^{2}-7x-9=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-7 ab=2\left(-9\right)=-18
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 2x^{2}+ax+bx-9. To find a and b, set up a system to be solved.
1,-18 2,-9 3,-6
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -18.
1-18=-17 2-9=-7 3-6=-3
Calculate the sum for each pair.
a=-9 b=2
The solution is the pair that gives sum -7.
\left(2x^{2}-9x\right)+\left(2x-9\right)
Rewrite 2x^{2}-7x-9 as \left(2x^{2}-9x\right)+\left(2x-9\right).
x\left(2x-9\right)+2x-9
Factor out x in 2x^{2}-9x.
\left(2x-9\right)\left(x+1\right)
Factor out common term 2x-9 by using distributive property.
x=\frac{9}{2} x=-1
To find equation solutions, solve 2x-9=0 and x+1=0.
x^{2}-\frac{49}{4}=9-\left(x^{2}-7x+\frac{49}{4}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-\frac{7}{2}\right)^{2}.
x^{2}-\frac{49}{4}=9-x^{2}+7x-\frac{49}{4}
To find the opposite of x^{2}-7x+\frac{49}{4}, find the opposite of each term.
x^{2}-\frac{49}{4}=-\frac{13}{4}-x^{2}+7x
Subtract \frac{49}{4} from 9 to get -\frac{13}{4}.
x^{2}-\frac{49}{4}-\left(-\frac{13}{4}\right)=-x^{2}+7x
Subtract -\frac{13}{4} from both sides.
x^{2}-\frac{49}{4}+\frac{13}{4}=-x^{2}+7x
The opposite of -\frac{13}{4} is \frac{13}{4}.
x^{2}-\frac{49}{4}+\frac{13}{4}+x^{2}=7x
Add x^{2} to both sides.
x^{2}-9+x^{2}=7x
Add -\frac{49}{4} and \frac{13}{4} to get -9.
2x^{2}-9=7x
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-9-7x=0
Subtract 7x from both sides.
2x^{2}-7x-9=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 2\left(-9\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -7 for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 2\left(-9\right)}}{2\times 2}
Square -7.
x=\frac{-\left(-7\right)±\sqrt{49-8\left(-9\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-7\right)±\sqrt{49+72}}{2\times 2}
Multiply -8 times -9.
x=\frac{-\left(-7\right)±\sqrt{121}}{2\times 2}
Add 49 to 72.
x=\frac{-\left(-7\right)±11}{2\times 2}
Take the square root of 121.
x=\frac{7±11}{2\times 2}
The opposite of -7 is 7.
x=\frac{7±11}{4}
Multiply 2 times 2.
x=\frac{18}{4}
Now solve the equation x=\frac{7±11}{4} when ± is plus. Add 7 to 11.
x=\frac{9}{2}
Reduce the fraction \frac{18}{4} to lowest terms by extracting and canceling out 2.
x=-\frac{4}{4}
Now solve the equation x=\frac{7±11}{4} when ± is minus. Subtract 11 from 7.
x=-1
Divide -4 by 4.
x=\frac{9}{2} x=-1
The equation is now solved.
x^{2}-\frac{49}{4}=9-\left(x^{2}-7x+\frac{49}{4}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-\frac{7}{2}\right)^{2}.
x^{2}-\frac{49}{4}=9-x^{2}+7x-\frac{49}{4}
To find the opposite of x^{2}-7x+\frac{49}{4}, find the opposite of each term.
x^{2}-\frac{49}{4}=-\frac{13}{4}-x^{2}+7x
Subtract \frac{49}{4} from 9 to get -\frac{13}{4}.
x^{2}-\frac{49}{4}+x^{2}=-\frac{13}{4}+7x
Add x^{2} to both sides.
2x^{2}-\frac{49}{4}=-\frac{13}{4}+7x
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-\frac{49}{4}-7x=-\frac{13}{4}
Subtract 7x from both sides.
2x^{2}-7x=-\frac{13}{4}+\frac{49}{4}
Add \frac{49}{4} to both sides.
2x^{2}-7x=9
Add -\frac{13}{4} and \frac{49}{4} to get 9.
\frac{2x^{2}-7x}{2}=\frac{9}{2}
Divide both sides by 2.
x^{2}-\frac{7}{2}x=\frac{9}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-\frac{7}{2}x+\left(-\frac{7}{4}\right)^{2}=\frac{9}{2}+\left(-\frac{7}{4}\right)^{2}
Divide -\frac{7}{2}, the coefficient of the x term, by 2 to get -\frac{7}{4}. Then add the square of -\frac{7}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{2}x+\frac{49}{16}=\frac{9}{2}+\frac{49}{16}
Square -\frac{7}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{2}x+\frac{49}{16}=\frac{121}{16}
Add \frac{9}{2} to \frac{49}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{4}\right)^{2}=\frac{121}{16}
Factor x^{2}-\frac{7}{2}x+\frac{49}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{4}\right)^{2}}=\sqrt{\frac{121}{16}}
Take the square root of both sides of the equation.
x-\frac{7}{4}=\frac{11}{4} x-\frac{7}{4}=-\frac{11}{4}
Simplify.
x=\frac{9}{2} x=-1
Add \frac{7}{4} to both sides of the equation.