Solve for x (complex solution)
x=\frac{1+\sqrt{3}i}{8}\approx 0.125+0.216506351i
x=\frac{-\sqrt{3}i+1}{8}\approx 0.125-0.216506351i
Graph
Share
Copied to clipboard
x^{2}-\frac{1}{4}x+\frac{1}{16}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{1}{4}\right)±\sqrt{\left(-\frac{1}{4}\right)^{2}-4\times \frac{1}{16}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -\frac{1}{4} for b, and \frac{1}{16} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{1}{4}\right)±\sqrt{\frac{1}{16}-4\times \frac{1}{16}}}{2}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{1}{4}\right)±\sqrt{\frac{1}{16}-\frac{1}{4}}}{2}
Multiply -4 times \frac{1}{16}.
x=\frac{-\left(-\frac{1}{4}\right)±\sqrt{-\frac{3}{16}}}{2}
Add \frac{1}{16} to -\frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{1}{4}\right)±\frac{\sqrt{3}i}{4}}{2}
Take the square root of -\frac{3}{16}.
x=\frac{\frac{1}{4}±\frac{\sqrt{3}i}{4}}{2}
The opposite of -\frac{1}{4} is \frac{1}{4}.
x=\frac{1+\sqrt{3}i}{2\times 4}
Now solve the equation x=\frac{\frac{1}{4}±\frac{\sqrt{3}i}{4}}{2} when ± is plus. Add \frac{1}{4} to \frac{i\sqrt{3}}{4}.
x=\frac{1+\sqrt{3}i}{8}
Divide \frac{1+i\sqrt{3}}{4} by 2.
x=\frac{-\sqrt{3}i+1}{2\times 4}
Now solve the equation x=\frac{\frac{1}{4}±\frac{\sqrt{3}i}{4}}{2} when ± is minus. Subtract \frac{i\sqrt{3}}{4} from \frac{1}{4}.
x=\frac{-\sqrt{3}i+1}{8}
Divide \frac{1-i\sqrt{3}}{4} by 2.
x=\frac{1+\sqrt{3}i}{8} x=\frac{-\sqrt{3}i+1}{8}
The equation is now solved.
x^{2}-\frac{1}{4}x+\frac{1}{16}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-\frac{1}{4}x+\frac{1}{16}-\frac{1}{16}=-\frac{1}{16}
Subtract \frac{1}{16} from both sides of the equation.
x^{2}-\frac{1}{4}x=-\frac{1}{16}
Subtracting \frac{1}{16} from itself leaves 0.
x^{2}-\frac{1}{4}x+\left(-\frac{1}{8}\right)^{2}=-\frac{1}{16}+\left(-\frac{1}{8}\right)^{2}
Divide -\frac{1}{4}, the coefficient of the x term, by 2 to get -\frac{1}{8}. Then add the square of -\frac{1}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{4}x+\frac{1}{64}=-\frac{1}{16}+\frac{1}{64}
Square -\frac{1}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{4}x+\frac{1}{64}=-\frac{3}{64}
Add -\frac{1}{16} to \frac{1}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{8}\right)^{2}=-\frac{3}{64}
Factor x^{2}-\frac{1}{4}x+\frac{1}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{8}\right)^{2}}=\sqrt{-\frac{3}{64}}
Take the square root of both sides of the equation.
x-\frac{1}{8}=\frac{\sqrt{3}i}{8} x-\frac{1}{8}=-\frac{\sqrt{3}i}{8}
Simplify.
x=\frac{1+\sqrt{3}i}{8} x=\frac{-\sqrt{3}i+1}{8}
Add \frac{1}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}