Evaluate
x^{2}-\frac{\sqrt{2}x}{2}+1
Factor
\frac{\sqrt{2}\left(\sqrt{2}x^{2}-x+\sqrt{2}\right)}{2}
Graph
Share
Copied to clipboard
x^{2}-\frac{\sqrt{2}x}{2}+1
Express \frac{\sqrt{2}}{2}x as a single fraction.
\frac{2x^{2}}{2}-\frac{\sqrt{2}x}{2}+1
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2} times \frac{2}{2}.
\frac{2x^{2}-\sqrt{2}x}{2}+1
Since \frac{2x^{2}}{2} and \frac{\sqrt{2}x}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{2}-\sqrt{2}x}{2}+\frac{2}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2}{2}.
\frac{2x^{2}-\sqrt{2}x+2}{2}
Since \frac{2x^{2}-\sqrt{2}x}{2} and \frac{2}{2} have the same denominator, add them by adding their numerators.
\frac{2x^{2}-\sqrt{2}x+2}{2}
Factor out \frac{1}{2}.
\sqrt{2}\left(\sqrt{2}x^{2}-x+\sqrt{2}\right)
Consider 2x^{2}-\sqrt{2}x+2. Factor out \sqrt{2}.
\frac{\sqrt{2}\left(\sqrt{2}x^{2}-x+\sqrt{2}\right)}{2}
Rewrite the complete factored expression. Polynomial \sqrt{2}x^{2}-x+\sqrt{2} is not factored since it does not have any rational roots.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}