Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-5x^{2}=6
Subtract 5x^{2} from both sides.
-4x^{2}=6
Combine x^{2} and -5x^{2} to get -4x^{2}.
x^{2}=\frac{6}{-4}
Divide both sides by -4.
x^{2}=-\frac{3}{2}
Reduce the fraction \frac{6}{-4} to lowest terms by extracting and canceling out 2.
x=\frac{\sqrt{6}i}{2} x=-\frac{\sqrt{6}i}{2}
The equation is now solved.
x^{2}-5x^{2}=6
Subtract 5x^{2} from both sides.
-4x^{2}=6
Combine x^{2} and -5x^{2} to get -4x^{2}.
-4x^{2}-6=0
Subtract 6 from both sides.
x=\frac{0±\sqrt{0^{2}-4\left(-4\right)\left(-6\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 0 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-4\right)\left(-6\right)}}{2\left(-4\right)}
Square 0.
x=\frac{0±\sqrt{16\left(-6\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{0±\sqrt{-96}}{2\left(-4\right)}
Multiply 16 times -6.
x=\frac{0±4\sqrt{6}i}{2\left(-4\right)}
Take the square root of -96.
x=\frac{0±4\sqrt{6}i}{-8}
Multiply 2 times -4.
x=-\frac{\sqrt{6}i}{2}
Now solve the equation x=\frac{0±4\sqrt{6}i}{-8} when ± is plus.
x=\frac{\sqrt{6}i}{2}
Now solve the equation x=\frac{0±4\sqrt{6}i}{-8} when ± is minus.
x=-\frac{\sqrt{6}i}{2} x=\frac{\sqrt{6}i}{2}
The equation is now solved.