Solve for x
x = -\frac{641088}{280475} = -2\frac{80138}{280475} \approx -2.285722435
x=0
Graph
Share
Copied to clipboard
x^{2}=21x\left(14x+32\right)\times 954
Multiply 3 and 7 to get 21.
x^{2}=20034x\left(14x+32\right)
Multiply 21 and 954 to get 20034.
x^{2}=280476x^{2}+641088x
Use the distributive property to multiply 20034x by 14x+32.
x^{2}-280476x^{2}=641088x
Subtract 280476x^{2} from both sides.
-280475x^{2}=641088x
Combine x^{2} and -280476x^{2} to get -280475x^{2}.
-280475x^{2}-641088x=0
Subtract 641088x from both sides.
x\left(-280475x-641088\right)=0
Factor out x.
x=0 x=-\frac{641088}{280475}
To find equation solutions, solve x=0 and -280475x-641088=0.
x^{2}=21x\left(14x+32\right)\times 954
Multiply 3 and 7 to get 21.
x^{2}=20034x\left(14x+32\right)
Multiply 21 and 954 to get 20034.
x^{2}=280476x^{2}+641088x
Use the distributive property to multiply 20034x by 14x+32.
x^{2}-280476x^{2}=641088x
Subtract 280476x^{2} from both sides.
-280475x^{2}=641088x
Combine x^{2} and -280476x^{2} to get -280475x^{2}.
-280475x^{2}-641088x=0
Subtract 641088x from both sides.
x=\frac{-\left(-641088\right)±\sqrt{\left(-641088\right)^{2}}}{2\left(-280475\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -280475 for a, -641088 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-641088\right)±641088}{2\left(-280475\right)}
Take the square root of \left(-641088\right)^{2}.
x=\frac{641088±641088}{2\left(-280475\right)}
The opposite of -641088 is 641088.
x=\frac{641088±641088}{-560950}
Multiply 2 times -280475.
x=\frac{1282176}{-560950}
Now solve the equation x=\frac{641088±641088}{-560950} when ± is plus. Add 641088 to 641088.
x=-\frac{641088}{280475}
Reduce the fraction \frac{1282176}{-560950} to lowest terms by extracting and canceling out 2.
x=\frac{0}{-560950}
Now solve the equation x=\frac{641088±641088}{-560950} when ± is minus. Subtract 641088 from 641088.
x=0
Divide 0 by -560950.
x=-\frac{641088}{280475} x=0
The equation is now solved.
x^{2}=21x\left(14x+32\right)\times 954
Multiply 3 and 7 to get 21.
x^{2}=20034x\left(14x+32\right)
Multiply 21 and 954 to get 20034.
x^{2}=280476x^{2}+641088x
Use the distributive property to multiply 20034x by 14x+32.
x^{2}-280476x^{2}=641088x
Subtract 280476x^{2} from both sides.
-280475x^{2}=641088x
Combine x^{2} and -280476x^{2} to get -280475x^{2}.
-280475x^{2}-641088x=0
Subtract 641088x from both sides.
\frac{-280475x^{2}-641088x}{-280475}=\frac{0}{-280475}
Divide both sides by -280475.
x^{2}+\left(-\frac{641088}{-280475}\right)x=\frac{0}{-280475}
Dividing by -280475 undoes the multiplication by -280475.
x^{2}+\frac{641088}{280475}x=\frac{0}{-280475}
Divide -641088 by -280475.
x^{2}+\frac{641088}{280475}x=0
Divide 0 by -280475.
x^{2}+\frac{641088}{280475}x+\left(\frac{320544}{280475}\right)^{2}=\left(\frac{320544}{280475}\right)^{2}
Divide \frac{641088}{280475}, the coefficient of the x term, by 2 to get \frac{320544}{280475}. Then add the square of \frac{320544}{280475} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{641088}{280475}x+\frac{102748455936}{78666225625}=\frac{102748455936}{78666225625}
Square \frac{320544}{280475} by squaring both the numerator and the denominator of the fraction.
\left(x+\frac{320544}{280475}\right)^{2}=\frac{102748455936}{78666225625}
Factor x^{2}+\frac{641088}{280475}x+\frac{102748455936}{78666225625}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{320544}{280475}\right)^{2}}=\sqrt{\frac{102748455936}{78666225625}}
Take the square root of both sides of the equation.
x+\frac{320544}{280475}=\frac{320544}{280475} x+\frac{320544}{280475}=-\frac{320544}{280475}
Simplify.
x=0 x=-\frac{641088}{280475}
Subtract \frac{320544}{280475} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}