Skip to main content
Solve for x
Tick mark Image
Graph

Share

22x^{2}=308\times 7\times 8
Multiply both sides of the equation by 22.
22x^{2}=2156\times 8
Multiply 308 and 7 to get 2156.
22x^{2}=17248
Multiply 2156 and 8 to get 17248.
22x^{2}-17248=0
Subtract 17248 from both sides.
x^{2}-784=0
Divide both sides by 22.
\left(x-28\right)\left(x+28\right)=0
Consider x^{2}-784. Rewrite x^{2}-784 as x^{2}-28^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=28 x=-28
To find equation solutions, solve x-28=0 and x+28=0.
22x^{2}=308\times 7\times 8
Multiply both sides of the equation by 22.
22x^{2}=2156\times 8
Multiply 308 and 7 to get 2156.
22x^{2}=17248
Multiply 2156 and 8 to get 17248.
x^{2}=\frac{17248}{22}
Divide both sides by 22.
x^{2}=784
Divide 17248 by 22 to get 784.
x=28 x=-28
Take the square root of both sides of the equation.
22x^{2}=308\times 7\times 8
Multiply both sides of the equation by 22.
22x^{2}=2156\times 8
Multiply 308 and 7 to get 2156.
22x^{2}=17248
Multiply 2156 and 8 to get 17248.
22x^{2}-17248=0
Subtract 17248 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 22\left(-17248\right)}}{2\times 22}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 22 for a, 0 for b, and -17248 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 22\left(-17248\right)}}{2\times 22}
Square 0.
x=\frac{0±\sqrt{-88\left(-17248\right)}}{2\times 22}
Multiply -4 times 22.
x=\frac{0±\sqrt{1517824}}{2\times 22}
Multiply -88 times -17248.
x=\frac{0±1232}{2\times 22}
Take the square root of 1517824.
x=\frac{0±1232}{44}
Multiply 2 times 22.
x=28
Now solve the equation x=\frac{0±1232}{44} when ± is plus. Divide 1232 by 44.
x=-28
Now solve the equation x=\frac{0±1232}{44} when ± is minus. Divide -1232 by 44.
x=28 x=-28
The equation is now solved.