Solve for x
x=\sqrt{10}-2\approx 1.16227766
x=-\sqrt{10}-2\approx -5.16227766
x=4
Graph
Share
Copied to clipboard
xx^{2}=x\times 21-\left(24-x\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
x^{3}=x\times 21-\left(24-x\right)
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
x^{3}=x\times 21-24+x
To find the opposite of 24-x, find the opposite of each term.
x^{3}=22x-24
Combine x\times 21 and x to get 22x.
x^{3}-22x=-24
Subtract 22x from both sides.
x^{3}-22x+24=0
Add 24 to both sides.
±24,±12,±8,±6,±4,±3,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 24 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=4
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{2}+4x-6=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{3}-22x+24 by x-4 to get x^{2}+4x-6. Solve the equation where the result equals to 0.
x=\frac{-4±\sqrt{4^{2}-4\times 1\left(-6\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 4 for b, and -6 for c in the quadratic formula.
x=\frac{-4±2\sqrt{10}}{2}
Do the calculations.
x=-\sqrt{10}-2 x=\sqrt{10}-2
Solve the equation x^{2}+4x-6=0 when ± is plus and when ± is minus.
x=4 x=-\sqrt{10}-2 x=\sqrt{10}-2
List all found solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}