Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}=\frac{15}{6}
Divide 15 by \frac{6}{1} by multiplying 15 by the reciprocal of \frac{6}{1}.
x^{2}=\frac{5}{2}
Reduce the fraction \frac{15}{6} to lowest terms by extracting and canceling out 3.
x=\frac{\sqrt{10}}{2} x=-\frac{\sqrt{10}}{2}
Take the square root of both sides of the equation.
x^{2}=\frac{15}{6}
Divide 15 by \frac{6}{1} by multiplying 15 by the reciprocal of \frac{6}{1}.
x^{2}=\frac{5}{2}
Reduce the fraction \frac{15}{6} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{5}{2}=0
Subtract \frac{5}{2} from both sides.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{5}{2}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{5}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{5}{2}\right)}}{2}
Square 0.
x=\frac{0±\sqrt{10}}{2}
Multiply -4 times -\frac{5}{2}.
x=\frac{\sqrt{10}}{2}
Now solve the equation x=\frac{0±\sqrt{10}}{2} when ± is plus.
x=-\frac{\sqrt{10}}{2}
Now solve the equation x=\frac{0±\sqrt{10}}{2} when ± is minus.
x=\frac{\sqrt{10}}{2} x=-\frac{\sqrt{10}}{2}
The equation is now solved.