Solve for x (complex solution)
x=-\sqrt{-\frac{672\sqrt{2}}{5}+272}\approx -9.051502484
x=\sqrt{-\frac{672\sqrt{2}}{5}+272}\approx 9.051502484
Solve for x
x = \frac{4 \sqrt{425 - 210 \sqrt{2}}}{5} \approx 9.051502484
x = -\frac{4 \sqrt{425 - 210 \sqrt{2}}}{5} \approx -9.051502484
Graph
Share
Copied to clipboard
x^{2}=272-0.7\times 2\times 8\times 12\sqrt{2}
Add 144 and 128 to get 272.
x^{2}=272-1.4\times 8\times 12\sqrt{2}
Multiply 0.7 and 2 to get 1.4.
x^{2}=272-11.2\times 12\sqrt{2}
Multiply 1.4 and 8 to get 11.2.
x^{2}=272-134.4\sqrt{2}
Multiply 11.2 and 12 to get 134.4.
x=\frac{4\sqrt{425-210\sqrt{2}}}{5} x=-\frac{4\sqrt{425-210\sqrt{2}}}{5}
The equation is now solved.
x^{2}=272-0.7\times 2\times 8\times 12\sqrt{2}
Add 144 and 128 to get 272.
x^{2}=272-1.4\times 8\times 12\sqrt{2}
Multiply 0.7 and 2 to get 1.4.
x^{2}=272-11.2\times 12\sqrt{2}
Multiply 1.4 and 8 to get 11.2.
x^{2}=272-134.4\sqrt{2}
Multiply 11.2 and 12 to get 134.4.
x^{2}-272=-134.4\sqrt{2}
Subtract 272 from both sides.
x^{2}-272+134.4\sqrt{2}=0
Add 134.4\sqrt{2} to both sides.
x^{2}+\frac{672\sqrt{2}}{5}-272=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(\frac{672\sqrt{2}}{5}-272\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -272+\frac{672\sqrt{2}}{5} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(\frac{672\sqrt{2}}{5}-272\right)}}{2}
Square 0.
x=\frac{0±\sqrt{-\frac{2688\sqrt{2}}{5}+1088}}{2}
Multiply -4 times -272+\frac{672\sqrt{2}}{5}.
x=\frac{0±\frac{8\sqrt{425-210\sqrt{2}}}{5}}{2}
Take the square root of 1088-\frac{2688\sqrt{2}}{5}.
x=\frac{4\sqrt{425-210\sqrt{2}}}{5}
Now solve the equation x=\frac{0±\frac{8\sqrt{425-210\sqrt{2}}}{5}}{2} when ± is plus.
x=-\frac{4\sqrt{425-210\sqrt{2}}}{5}
Now solve the equation x=\frac{0±\frac{8\sqrt{425-210\sqrt{2}}}{5}}{2} when ± is minus.
x=\frac{4\sqrt{425-210\sqrt{2}}}{5} x=-\frac{4\sqrt{425-210\sqrt{2}}}{5}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}