Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}=-\sqrt{144-4\left(-32\right)}
Calculate 12 to the power of 2 and get 144.
x^{2}=-\sqrt{144-\left(-128\right)}
Multiply 4 and -32 to get -128.
x^{2}=-\sqrt{144+128}
The opposite of -128 is 128.
x^{2}=-\sqrt{272}
Add 144 and 128 to get 272.
x^{2}=-4\sqrt{17}
Factor 272=4^{2}\times 17. Rewrite the square root of the product \sqrt{4^{2}\times 17} as the product of square roots \sqrt{4^{2}}\sqrt{17}. Take the square root of 4^{2}.
x=\sqrt[4]{17}\times \left(2i\right) x=-\sqrt[4]{17}\times \left(2i\right)
The equation is now solved.
x^{2}=-\sqrt{144-4\left(-32\right)}
Calculate 12 to the power of 2 and get 144.
x^{2}=-\sqrt{144-\left(-128\right)}
Multiply 4 and -32 to get -128.
x^{2}=-\sqrt{144+128}
The opposite of -128 is 128.
x^{2}=-\sqrt{272}
Add 144 and 128 to get 272.
x^{2}=-4\sqrt{17}
Factor 272=4^{2}\times 17. Rewrite the square root of the product \sqrt{4^{2}\times 17} as the product of square roots \sqrt{4^{2}}\sqrt{17}. Take the square root of 4^{2}.
x^{2}+4\sqrt{17}=0
Add 4\sqrt{17} to both sides.
x=\frac{0±\sqrt{0^{2}-4\times 4\sqrt{17}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and 4\sqrt{17} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 4\sqrt{17}}}{2}
Square 0.
x=\frac{0±\sqrt{-16\sqrt{17}}}{2}
Multiply -4 times 4\sqrt{17}.
x=\frac{0±\sqrt[4]{17}\times \left(4i\right)}{2}
Take the square root of -16\sqrt{17}.
x=\sqrt[4]{17}\times \left(2i\right)
Now solve the equation x=\frac{0±\sqrt[4]{17}\times \left(4i\right)}{2} when ± is plus.
x=-\sqrt[4]{17}\times \left(2i\right)
Now solve the equation x=\frac{0±\sqrt[4]{17}\times \left(4i\right)}{2} when ± is minus.
x=\sqrt[4]{17}\times \left(2i\right) x=-\sqrt[4]{17}\times \left(2i\right)
The equation is now solved.