{ x }^{ 2 } = { 34 }^{ 2 } + { 34 }^{ 2 } -(34 \times 34 \times 2 \times \cos ( 60 )
Solve for x (complex solution)
x=e^{\pi i}\sqrt{2312-2312\cos(-60)}\approx -67.186150438
x=e^{\frac{arg(2312-2312\cos(-60))i}{2}}\sqrt{2312-2312\cos(-60)}\approx 67.186150438
Solve for x
x=34\sqrt{2\left(1-\cos(60)\right)}\approx 67.186150438
x=-34\sqrt{2\left(1-\cos(60)\right)}\approx -67.186150438
Graph
Share
Copied to clipboard
x^{2}=1156+34^{2}-34\times 34\times 2\times \cos(60)
Calculate 34 to the power of 2 and get 1156.
x^{2}=1156+1156-34\times 34\times 2\times \cos(60)
Calculate 34 to the power of 2 and get 1156.
x^{2}=2312-34\times 34\times 2\times \cos(60)
Add 1156 and 1156 to get 2312.
x=34\sqrt{2\left(1-\cos(60)\right)} x=-34\sqrt{2\left(1-\cos(60)\right)}
The equation is now solved.
x^{2}=1156+34^{2}-34\times 34\times 2\times \cos(60)
Calculate 34 to the power of 2 and get 1156.
x^{2}=1156+1156-34\times 34\times 2\times \cos(60)
Calculate 34 to the power of 2 and get 1156.
x^{2}=2312-34\times 34\times 2\times \cos(60)
Add 1156 and 1156 to get 2312.
x^{2}+34\times 34\times 2\times \cos(60)=2312
Add 34\times 34\times 2\times \cos(60) to both sides.
x^{2}+34\times 34\times 2\times \cos(60)-2312=0
Subtract 2312 from both sides.
x^{2}+2312\cos(60)-2312=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 2312\left(\cos(60)-1\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and 2312\left(\cos(60)-1\right) for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2312\left(\cos(60)-1\right)}}{2}
Square 0.
x=\frac{0±\sqrt{9248\left(1-\cos(60)\right)}}{2}
Multiply -4 times 2312\left(\cos(60)-1\right).
x=\frac{0±68\sqrt{2\left(1-\cos(60)\right)}}{2}
Take the square root of 9248\left(-\cos(60)+1\right).
x=34\sqrt{2\left(1-\cos(60)\right)}
Now solve the equation x=\frac{0±68\sqrt{2\left(1-\cos(60)\right)}}{2} when ± is plus.
x=-34\sqrt{2\left(1-\cos(60)\right)}
Now solve the equation x=\frac{0±68\sqrt{2\left(1-\cos(60)\right)}}{2} when ± is minus.
x=34\sqrt{2\left(1-\cos(60)\right)} x=-34\sqrt{2\left(1-\cos(60)\right)}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}