Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Share

x^{2}=1156+34^{2}-34\times 34\times 2\times \cos(60)
Calculate 34 to the power of 2 and get 1156.
x^{2}=1156+1156-34\times 34\times 2\times \cos(60)
Calculate 34 to the power of 2 and get 1156.
x^{2}=2312-34\times 34\times 2\times \cos(60)
Add 1156 and 1156 to get 2312.
x=34\sqrt{2\left(1-\cos(60)\right)} x=-34\sqrt{2\left(1-\cos(60)\right)}
The equation is now solved.
x^{2}=1156+34^{2}-34\times 34\times 2\times \cos(60)
Calculate 34 to the power of 2 and get 1156.
x^{2}=1156+1156-34\times 34\times 2\times \cos(60)
Calculate 34 to the power of 2 and get 1156.
x^{2}=2312-34\times 34\times 2\times \cos(60)
Add 1156 and 1156 to get 2312.
x^{2}+34\times 34\times 2\times \cos(60)=2312
Add 34\times 34\times 2\times \cos(60) to both sides.
x^{2}+34\times 34\times 2\times \cos(60)-2312=0
Subtract 2312 from both sides.
x^{2}+2312\cos(60)-2312=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 2312\left(\cos(60)-1\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and 2312\left(\cos(60)-1\right) for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2312\left(\cos(60)-1\right)}}{2}
Square 0.
x=\frac{0±\sqrt{9248\left(1-\cos(60)\right)}}{2}
Multiply -4 times 2312\left(\cos(60)-1\right).
x=\frac{0±68\sqrt{2\left(1-\cos(60)\right)}}{2}
Take the square root of 9248\left(-\cos(60)+1\right).
x=34\sqrt{2\left(1-\cos(60)\right)}
Now solve the equation x=\frac{0±68\sqrt{2\left(1-\cos(60)\right)}}{2} when ± is plus.
x=-34\sqrt{2\left(1-\cos(60)\right)}
Now solve the equation x=\frac{0±68\sqrt{2\left(1-\cos(60)\right)}}{2} when ± is minus.
x=34\sqrt{2\left(1-\cos(60)\right)} x=-34\sqrt{2\left(1-\cos(60)\right)}
The equation is now solved.