Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=1 ab=1\left(-42\right)=-42
Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx-42. To find a and b, set up a system to be solved.
-1,42 -2,21 -3,14 -6,7
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -42.
-1+42=41 -2+21=19 -3+14=11 -6+7=1
Calculate the sum for each pair.
a=-6 b=7
The solution is the pair that gives sum 1.
\left(x^{2}-6x\right)+\left(7x-42\right)
Rewrite x^{2}+x-42 as \left(x^{2}-6x\right)+\left(7x-42\right).
x\left(x-6\right)+7\left(x-6\right)
Factor out x in the first and 7 in the second group.
\left(x-6\right)\left(x+7\right)
Factor out common term x-6 by using distributive property.
x^{2}+x-42=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-1±\sqrt{1^{2}-4\left(-42\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1-4\left(-42\right)}}{2}
Square 1.
x=\frac{-1±\sqrt{1+168}}{2}
Multiply -4 times -42.
x=\frac{-1±\sqrt{169}}{2}
Add 1 to 168.
x=\frac{-1±13}{2}
Take the square root of 169.
x=\frac{12}{2}
Now solve the equation x=\frac{-1±13}{2} when ± is plus. Add -1 to 13.
x=6
Divide 12 by 2.
x=-\frac{14}{2}
Now solve the equation x=\frac{-1±13}{2} when ± is minus. Subtract 13 from -1.
x=-7
Divide -14 by 2.
x^{2}+x-42=\left(x-6\right)\left(x-\left(-7\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 6 for x_{1} and -7 for x_{2}.
x^{2}+x-42=\left(x-6\right)\left(x+7\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.