Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=1 ab=-380
To solve the equation, factor x^{2}+x-380 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,380 -2,190 -4,95 -5,76 -10,38 -19,20
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -380.
-1+380=379 -2+190=188 -4+95=91 -5+76=71 -10+38=28 -19+20=1
Calculate the sum for each pair.
a=-19 b=20
The solution is the pair that gives sum 1.
\left(x-19\right)\left(x+20\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=19 x=-20
To find equation solutions, solve x-19=0 and x+20=0.
a+b=1 ab=1\left(-380\right)=-380
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-380. To find a and b, set up a system to be solved.
-1,380 -2,190 -4,95 -5,76 -10,38 -19,20
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -380.
-1+380=379 -2+190=188 -4+95=91 -5+76=71 -10+38=28 -19+20=1
Calculate the sum for each pair.
a=-19 b=20
The solution is the pair that gives sum 1.
\left(x^{2}-19x\right)+\left(20x-380\right)
Rewrite x^{2}+x-380 as \left(x^{2}-19x\right)+\left(20x-380\right).
x\left(x-19\right)+20\left(x-19\right)
Factor out x in the first and 20 in the second group.
\left(x-19\right)\left(x+20\right)
Factor out common term x-19 by using distributive property.
x=19 x=-20
To find equation solutions, solve x-19=0 and x+20=0.
x^{2}+x-380=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1^{2}-4\left(-380\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 1 for b, and -380 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-380\right)}}{2}
Square 1.
x=\frac{-1±\sqrt{1+1520}}{2}
Multiply -4 times -380.
x=\frac{-1±\sqrt{1521}}{2}
Add 1 to 1520.
x=\frac{-1±39}{2}
Take the square root of 1521.
x=\frac{38}{2}
Now solve the equation x=\frac{-1±39}{2} when ± is plus. Add -1 to 39.
x=19
Divide 38 by 2.
x=-\frac{40}{2}
Now solve the equation x=\frac{-1±39}{2} when ± is minus. Subtract 39 from -1.
x=-20
Divide -40 by 2.
x=19 x=-20
The equation is now solved.
x^{2}+x-380=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+x-380-\left(-380\right)=-\left(-380\right)
Add 380 to both sides of the equation.
x^{2}+x=-\left(-380\right)
Subtracting -380 from itself leaves 0.
x^{2}+x=380
Subtract -380 from 0.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=380+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=380+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=\frac{1521}{4}
Add 380 to \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{1521}{4}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{1521}{4}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{39}{2} x+\frac{1}{2}=-\frac{39}{2}
Simplify.
x=19 x=-20
Subtract \frac{1}{2} from both sides of the equation.