Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-x-\left(2x^{2}-5\right)=0
Combine x and -2x to get -x.
x^{2}-x-2x^{2}+5=0
To find the opposite of 2x^{2}-5, find the opposite of each term.
-x^{2}-x+5=0
Combine x^{2} and -2x^{2} to get -x^{2}.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)\times 5}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -1 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+4\times 5}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-1\right)±\sqrt{1+20}}{2\left(-1\right)}
Multiply 4 times 5.
x=\frac{-\left(-1\right)±\sqrt{21}}{2\left(-1\right)}
Add 1 to 20.
x=\frac{1±\sqrt{21}}{2\left(-1\right)}
The opposite of -1 is 1.
x=\frac{1±\sqrt{21}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{21}+1}{-2}
Now solve the equation x=\frac{1±\sqrt{21}}{-2} when ± is plus. Add 1 to \sqrt{21}.
x=\frac{-\sqrt{21}-1}{2}
Divide 1+\sqrt{21} by -2.
x=\frac{1-\sqrt{21}}{-2}
Now solve the equation x=\frac{1±\sqrt{21}}{-2} when ± is minus. Subtract \sqrt{21} from 1.
x=\frac{\sqrt{21}-1}{2}
Divide 1-\sqrt{21} by -2.
x=\frac{-\sqrt{21}-1}{2} x=\frac{\sqrt{21}-1}{2}
The equation is now solved.
x^{2}-x-\left(2x^{2}-5\right)=0
Combine x and -2x to get -x.
x^{2}-x-2x^{2}+5=0
To find the opposite of 2x^{2}-5, find the opposite of each term.
-x^{2}-x+5=0
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}-x=-5
Subtract 5 from both sides. Anything subtracted from zero gives its negation.
\frac{-x^{2}-x}{-1}=-\frac{5}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{1}{-1}\right)x=-\frac{5}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+x=-\frac{5}{-1}
Divide -1 by -1.
x^{2}+x=5
Divide -5 by -1.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=5+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=5+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=\frac{21}{4}
Add 5 to \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{21}{4}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{21}{4}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{\sqrt{21}}{2} x+\frac{1}{2}=-\frac{\sqrt{21}}{2}
Simplify.
x=\frac{\sqrt{21}-1}{2} x=\frac{-\sqrt{21}-1}{2}
Subtract \frac{1}{2} from both sides of the equation.