Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+x+2=100
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x^{2}+x+2-100=100-100
Subtract 100 from both sides of the equation.
x^{2}+x+2-100=0
Subtracting 100 from itself leaves 0.
x^{2}+x-98=0
Subtract 100 from 2.
x=\frac{-1±\sqrt{1^{2}-4\left(-98\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 1 for b, and -98 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-98\right)}}{2}
Square 1.
x=\frac{-1±\sqrt{1+392}}{2}
Multiply -4 times -98.
x=\frac{-1±\sqrt{393}}{2}
Add 1 to 392.
x=\frac{\sqrt{393}-1}{2}
Now solve the equation x=\frac{-1±\sqrt{393}}{2} when ± is plus. Add -1 to \sqrt{393}.
x=\frac{-\sqrt{393}-1}{2}
Now solve the equation x=\frac{-1±\sqrt{393}}{2} when ± is minus. Subtract \sqrt{393} from -1.
x=\frac{\sqrt{393}-1}{2} x=\frac{-\sqrt{393}-1}{2}
The equation is now solved.
x^{2}+x+2=100
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+x+2-2=100-2
Subtract 2 from both sides of the equation.
x^{2}+x=100-2
Subtracting 2 from itself leaves 0.
x^{2}+x=98
Subtract 2 from 100.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=98+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=98+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=\frac{393}{4}
Add 98 to \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{393}{4}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{393}{4}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{\sqrt{393}}{2} x+\frac{1}{2}=-\frac{\sqrt{393}}{2}
Simplify.
x=\frac{\sqrt{393}-1}{2} x=\frac{-\sqrt{393}-1}{2}
Subtract \frac{1}{2} from both sides of the equation.