Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+x+19=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1^{2}-4\times 19}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 1 for b, and 19 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times 19}}{2}
Square 1.
x=\frac{-1±\sqrt{1-76}}{2}
Multiply -4 times 19.
x=\frac{-1±\sqrt{-75}}{2}
Add 1 to -76.
x=\frac{-1±5\sqrt{3}i}{2}
Take the square root of -75.
x=\frac{-1+5\sqrt{3}i}{2}
Now solve the equation x=\frac{-1±5\sqrt{3}i}{2} when ± is plus. Add -1 to 5i\sqrt{3}.
x=\frac{-5\sqrt{3}i-1}{2}
Now solve the equation x=\frac{-1±5\sqrt{3}i}{2} when ± is minus. Subtract 5i\sqrt{3} from -1.
x=\frac{-1+5\sqrt{3}i}{2} x=\frac{-5\sqrt{3}i-1}{2}
The equation is now solved.
x^{2}+x+19=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+x+19-19=-19
Subtract 19 from both sides of the equation.
x^{2}+x=-19
Subtracting 19 from itself leaves 0.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=-19+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=-19+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=-\frac{75}{4}
Add -19 to \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=-\frac{75}{4}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{-\frac{75}{4}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{5\sqrt{3}i}{2} x+\frac{1}{2}=-\frac{5\sqrt{3}i}{2}
Simplify.
x=\frac{-1+5\sqrt{3}i}{2} x=\frac{-5\sqrt{3}i-1}{2}
Subtract \frac{1}{2} from both sides of the equation.