Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+8x-7=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-8±\sqrt{8^{2}-4\left(-7\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-8±\sqrt{64-4\left(-7\right)}}{2}
Square 8.
x=\frac{-8±\sqrt{64+28}}{2}
Multiply -4 times -7.
x=\frac{-8±\sqrt{92}}{2}
Add 64 to 28.
x=\frac{-8±2\sqrt{23}}{2}
Take the square root of 92.
x=\frac{2\sqrt{23}-8}{2}
Now solve the equation x=\frac{-8±2\sqrt{23}}{2} when ± is plus. Add -8 to 2\sqrt{23}.
x=\sqrt{23}-4
Divide -8+2\sqrt{23} by 2.
x=\frac{-2\sqrt{23}-8}{2}
Now solve the equation x=\frac{-8±2\sqrt{23}}{2} when ± is minus. Subtract 2\sqrt{23} from -8.
x=-\sqrt{23}-4
Divide -8-2\sqrt{23} by 2.
x^{2}+8x-7=\left(x-\left(\sqrt{23}-4\right)\right)\left(x-\left(-\sqrt{23}-4\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -4+\sqrt{23} for x_{1} and -4-\sqrt{23} for x_{2}.