Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+8x-10=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-8±\sqrt{8^{2}-4\left(-10\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-8±\sqrt{64-4\left(-10\right)}}{2}
Square 8.
x=\frac{-8±\sqrt{64+40}}{2}
Multiply -4 times -10.
x=\frac{-8±\sqrt{104}}{2}
Add 64 to 40.
x=\frac{-8±2\sqrt{26}}{2}
Take the square root of 104.
x=\frac{2\sqrt{26}-8}{2}
Now solve the equation x=\frac{-8±2\sqrt{26}}{2} when ± is plus. Add -8 to 2\sqrt{26}.
x=\sqrt{26}-4
Divide -8+2\sqrt{26} by 2.
x=\frac{-2\sqrt{26}-8}{2}
Now solve the equation x=\frac{-8±2\sqrt{26}}{2} when ± is minus. Subtract 2\sqrt{26} from -8.
x=-\sqrt{26}-4
Divide -8-2\sqrt{26} by 2.
x^{2}+8x-10=\left(x-\left(\sqrt{26}-4\right)\right)\left(x-\left(-\sqrt{26}-4\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -4+\sqrt{26} for x_{1} and -4-\sqrt{26} for x_{2}.