Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+82x+26=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-82±\sqrt{82^{2}-4\times 26}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-82±\sqrt{6724-4\times 26}}{2}
Square 82.
x=\frac{-82±\sqrt{6724-104}}{2}
Multiply -4 times 26.
x=\frac{-82±\sqrt{6620}}{2}
Add 6724 to -104.
x=\frac{-82±2\sqrt{1655}}{2}
Take the square root of 6620.
x=\frac{2\sqrt{1655}-82}{2}
Now solve the equation x=\frac{-82±2\sqrt{1655}}{2} when ± is plus. Add -82 to 2\sqrt{1655}.
x=\sqrt{1655}-41
Divide -82+2\sqrt{1655} by 2.
x=\frac{-2\sqrt{1655}-82}{2}
Now solve the equation x=\frac{-82±2\sqrt{1655}}{2} when ± is minus. Subtract 2\sqrt{1655} from -82.
x=-\sqrt{1655}-41
Divide -82-2\sqrt{1655} by 2.
x^{2}+82x+26=\left(x-\left(\sqrt{1655}-41\right)\right)\left(x-\left(-\sqrt{1655}-41\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -41+\sqrt{1655} for x_{1} and -41-\sqrt{1655} for x_{2}.