Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

7x+9=-3x^{2}
Combine x^{2} and -x^{2} to get 0.
7x+9+3x^{2}=0
Add 3x^{2} to both sides.
3x^{2}+7x+9=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-7±\sqrt{7^{2}-4\times 3\times 9}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 7 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\times 3\times 9}}{2\times 3}
Square 7.
x=\frac{-7±\sqrt{49-12\times 9}}{2\times 3}
Multiply -4 times 3.
x=\frac{-7±\sqrt{49-108}}{2\times 3}
Multiply -12 times 9.
x=\frac{-7±\sqrt{-59}}{2\times 3}
Add 49 to -108.
x=\frac{-7±\sqrt{59}i}{2\times 3}
Take the square root of -59.
x=\frac{-7±\sqrt{59}i}{6}
Multiply 2 times 3.
x=\frac{-7+\sqrt{59}i}{6}
Now solve the equation x=\frac{-7±\sqrt{59}i}{6} when ± is plus. Add -7 to i\sqrt{59}.
x=\frac{-\sqrt{59}i-7}{6}
Now solve the equation x=\frac{-7±\sqrt{59}i}{6} when ± is minus. Subtract i\sqrt{59} from -7.
x=\frac{-7+\sqrt{59}i}{6} x=\frac{-\sqrt{59}i-7}{6}
The equation is now solved.
7x+9=-3x^{2}
Combine x^{2} and -x^{2} to get 0.
7x+9+3x^{2}=0
Add 3x^{2} to both sides.
7x+3x^{2}=-9
Subtract 9 from both sides. Anything subtracted from zero gives its negation.
3x^{2}+7x=-9
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{3x^{2}+7x}{3}=-\frac{9}{3}
Divide both sides by 3.
x^{2}+\frac{7}{3}x=-\frac{9}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{7}{3}x=-3
Divide -9 by 3.
x^{2}+\frac{7}{3}x+\left(\frac{7}{6}\right)^{2}=-3+\left(\frac{7}{6}\right)^{2}
Divide \frac{7}{3}, the coefficient of the x term, by 2 to get \frac{7}{6}. Then add the square of \frac{7}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{7}{3}x+\frac{49}{36}=-3+\frac{49}{36}
Square \frac{7}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{7}{3}x+\frac{49}{36}=-\frac{59}{36}
Add -3 to \frac{49}{36}.
\left(x+\frac{7}{6}\right)^{2}=-\frac{59}{36}
Factor x^{2}+\frac{7}{3}x+\frac{49}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{6}\right)^{2}}=\sqrt{-\frac{59}{36}}
Take the square root of both sides of the equation.
x+\frac{7}{6}=\frac{\sqrt{59}i}{6} x+\frac{7}{6}=-\frac{\sqrt{59}i}{6}
Simplify.
x=\frac{-7+\sqrt{59}i}{6} x=\frac{-\sqrt{59}i-7}{6}
Subtract \frac{7}{6} from both sides of the equation.