Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+77x+113=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-77±\sqrt{77^{2}-4\times 113}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-77±\sqrt{5929-4\times 113}}{2}
Square 77.
x=\frac{-77±\sqrt{5929-452}}{2}
Multiply -4 times 113.
x=\frac{-77±\sqrt{5477}}{2}
Add 5929 to -452.
x=\frac{\sqrt{5477}-77}{2}
Now solve the equation x=\frac{-77±\sqrt{5477}}{2} when ± is plus. Add -77 to \sqrt{5477}.
x=\frac{-\sqrt{5477}-77}{2}
Now solve the equation x=\frac{-77±\sqrt{5477}}{2} when ± is minus. Subtract \sqrt{5477} from -77.
x^{2}+77x+113=\left(x-\frac{\sqrt{5477}-77}{2}\right)\left(x-\frac{-\sqrt{5477}-77}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-77+\sqrt{5477}}{2} for x_{1} and \frac{-77-\sqrt{5477}}{2} for x_{2}.