Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+74x-6977=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-74±\sqrt{74^{2}-4\left(-6977\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 74 for b, and -6977 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-74±\sqrt{5476-4\left(-6977\right)}}{2}
Square 74.
x=\frac{-74±\sqrt{5476+27908}}{2}
Multiply -4 times -6977.
x=\frac{-74±\sqrt{33384}}{2}
Add 5476 to 27908.
x=\frac{-74±2\sqrt{8346}}{2}
Take the square root of 33384.
x=\frac{2\sqrt{8346}-74}{2}
Now solve the equation x=\frac{-74±2\sqrt{8346}}{2} when ± is plus. Add -74 to 2\sqrt{8346}.
x=\sqrt{8346}-37
Divide -74+2\sqrt{8346} by 2.
x=\frac{-2\sqrt{8346}-74}{2}
Now solve the equation x=\frac{-74±2\sqrt{8346}}{2} when ± is minus. Subtract 2\sqrt{8346} from -74.
x=-\sqrt{8346}-37
Divide -74-2\sqrt{8346} by 2.
x=\sqrt{8346}-37 x=-\sqrt{8346}-37
The equation is now solved.
x^{2}+74x-6977=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+74x-6977-\left(-6977\right)=-\left(-6977\right)
Add 6977 to both sides of the equation.
x^{2}+74x=-\left(-6977\right)
Subtracting -6977 from itself leaves 0.
x^{2}+74x=6977
Subtract -6977 from 0.
x^{2}+74x+37^{2}=6977+37^{2}
Divide 74, the coefficient of the x term, by 2 to get 37. Then add the square of 37 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+74x+1369=6977+1369
Square 37.
x^{2}+74x+1369=8346
Add 6977 to 1369.
\left(x+37\right)^{2}=8346
Factor x^{2}+74x+1369. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+37\right)^{2}}=\sqrt{8346}
Take the square root of both sides of the equation.
x+37=\sqrt{8346} x+37=-\sqrt{8346}
Simplify.
x=\sqrt{8346}-37 x=-\sqrt{8346}-37
Subtract 37 from both sides of the equation.
x^{2}+74x-6977=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-74±\sqrt{74^{2}-4\left(-6977\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 74 for b, and -6977 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-74±\sqrt{5476-4\left(-6977\right)}}{2}
Square 74.
x=\frac{-74±\sqrt{5476+27908}}{2}
Multiply -4 times -6977.
x=\frac{-74±\sqrt{33384}}{2}
Add 5476 to 27908.
x=\frac{-74±2\sqrt{8346}}{2}
Take the square root of 33384.
x=\frac{2\sqrt{8346}-74}{2}
Now solve the equation x=\frac{-74±2\sqrt{8346}}{2} when ± is plus. Add -74 to 2\sqrt{8346}.
x=\sqrt{8346}-37
Divide -74+2\sqrt{8346} by 2.
x=\frac{-2\sqrt{8346}-74}{2}
Now solve the equation x=\frac{-74±2\sqrt{8346}}{2} when ± is minus. Subtract 2\sqrt{8346} from -74.
x=-\sqrt{8346}-37
Divide -74-2\sqrt{8346} by 2.
x=\sqrt{8346}-37 x=-\sqrt{8346}-37
The equation is now solved.
x^{2}+74x-6977=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+74x-6977-\left(-6977\right)=-\left(-6977\right)
Add 6977 to both sides of the equation.
x^{2}+74x=-\left(-6977\right)
Subtracting -6977 from itself leaves 0.
x^{2}+74x=6977
Subtract -6977 from 0.
x^{2}+74x+37^{2}=6977+37^{2}
Divide 74, the coefficient of the x term, by 2 to get 37. Then add the square of 37 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+74x+1369=6977+1369
Square 37.
x^{2}+74x+1369=8346
Add 6977 to 1369.
\left(x+37\right)^{2}=8346
Factor x^{2}+74x+1369. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+37\right)^{2}}=\sqrt{8346}
Take the square root of both sides of the equation.
x+37=\sqrt{8346} x+37=-\sqrt{8346}
Simplify.
x=\sqrt{8346}-37 x=-\sqrt{8346}-37
Subtract 37 from both sides of the equation.