Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+70x+300=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-70±\sqrt{70^{2}-4\times 300}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-70±\sqrt{4900-4\times 300}}{2}
Square 70.
x=\frac{-70±\sqrt{4900-1200}}{2}
Multiply -4 times 300.
x=\frac{-70±\sqrt{3700}}{2}
Add 4900 to -1200.
x=\frac{-70±10\sqrt{37}}{2}
Take the square root of 3700.
x=\frac{10\sqrt{37}-70}{2}
Now solve the equation x=\frac{-70±10\sqrt{37}}{2} when ± is plus. Add -70 to 10\sqrt{37}.
x=5\sqrt{37}-35
Divide -70+10\sqrt{37} by 2.
x=\frac{-10\sqrt{37}-70}{2}
Now solve the equation x=\frac{-70±10\sqrt{37}}{2} when ± is minus. Subtract 10\sqrt{37} from -70.
x=-5\sqrt{37}-35
Divide -70-10\sqrt{37} by 2.
x^{2}+70x+300=\left(x-\left(5\sqrt{37}-35\right)\right)\left(x-\left(-5\sqrt{37}-35\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -35+5\sqrt{37} for x_{1} and -35-5\sqrt{37} for x_{2}.