Solve for x
x=-39
x=-31
Graph
Share
Copied to clipboard
x^{2}+70x+1209=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-70±\sqrt{70^{2}-4\times 1209}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 70 for b, and 1209 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-70±\sqrt{4900-4\times 1209}}{2}
Square 70.
x=\frac{-70±\sqrt{4900-4836}}{2}
Multiply -4 times 1209.
x=\frac{-70±\sqrt{64}}{2}
Add 4900 to -4836.
x=\frac{-70±8}{2}
Take the square root of 64.
x=-\frac{62}{2}
Now solve the equation x=\frac{-70±8}{2} when ± is plus. Add -70 to 8.
x=-31
Divide -62 by 2.
x=-\frac{78}{2}
Now solve the equation x=\frac{-70±8}{2} when ± is minus. Subtract 8 from -70.
x=-39
Divide -78 by 2.
x=-31 x=-39
The equation is now solved.
x^{2}+70x+1209=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+70x+1209-1209=-1209
Subtract 1209 from both sides of the equation.
x^{2}+70x=-1209
Subtracting 1209 from itself leaves 0.
x^{2}+70x+35^{2}=-1209+35^{2}
Divide 70, the coefficient of the x term, by 2 to get 35. Then add the square of 35 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+70x+1225=-1209+1225
Square 35.
x^{2}+70x+1225=16
Add -1209 to 1225.
\left(x+35\right)^{2}=16
Factor x^{2}+70x+1225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+35\right)^{2}}=\sqrt{16}
Take the square root of both sides of the equation.
x+35=4 x+35=-4
Simplify.
x=-31 x=-39
Subtract 35 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}