Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=6 ab=1\left(-91\right)=-91
Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx-91. To find a and b, set up a system to be solved.
-1,91 -7,13
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -91.
-1+91=90 -7+13=6
Calculate the sum for each pair.
a=-7 b=13
The solution is the pair that gives sum 6.
\left(x^{2}-7x\right)+\left(13x-91\right)
Rewrite x^{2}+6x-91 as \left(x^{2}-7x\right)+\left(13x-91\right).
x\left(x-7\right)+13\left(x-7\right)
Factor out x in the first and 13 in the second group.
\left(x-7\right)\left(x+13\right)
Factor out common term x-7 by using distributive property.
x^{2}+6x-91=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-6±\sqrt{6^{2}-4\left(-91\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-6±\sqrt{36-4\left(-91\right)}}{2}
Square 6.
x=\frac{-6±\sqrt{36+364}}{2}
Multiply -4 times -91.
x=\frac{-6±\sqrt{400}}{2}
Add 36 to 364.
x=\frac{-6±20}{2}
Take the square root of 400.
x=\frac{14}{2}
Now solve the equation x=\frac{-6±20}{2} when ± is plus. Add -6 to 20.
x=7
Divide 14 by 2.
x=-\frac{26}{2}
Now solve the equation x=\frac{-6±20}{2} when ± is minus. Subtract 20 from -6.
x=-13
Divide -26 by 2.
x^{2}+6x-91=\left(x-7\right)\left(x-\left(-13\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 7 for x_{1} and -13 for x_{2}.
x^{2}+6x-91=\left(x-7\right)\left(x+13\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.