Solve for x
x=-30
x=24
Graph
Share
Copied to clipboard
a+b=6 ab=-720
To solve the equation, factor x^{2}+6x-720 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,720 -2,360 -3,240 -4,180 -5,144 -6,120 -8,90 -9,80 -10,72 -12,60 -15,48 -16,45 -18,40 -20,36 -24,30
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -720.
-1+720=719 -2+360=358 -3+240=237 -4+180=176 -5+144=139 -6+120=114 -8+90=82 -9+80=71 -10+72=62 -12+60=48 -15+48=33 -16+45=29 -18+40=22 -20+36=16 -24+30=6
Calculate the sum for each pair.
a=-24 b=30
The solution is the pair that gives sum 6.
\left(x-24\right)\left(x+30\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=24 x=-30
To find equation solutions, solve x-24=0 and x+30=0.
a+b=6 ab=1\left(-720\right)=-720
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-720. To find a and b, set up a system to be solved.
-1,720 -2,360 -3,240 -4,180 -5,144 -6,120 -8,90 -9,80 -10,72 -12,60 -15,48 -16,45 -18,40 -20,36 -24,30
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -720.
-1+720=719 -2+360=358 -3+240=237 -4+180=176 -5+144=139 -6+120=114 -8+90=82 -9+80=71 -10+72=62 -12+60=48 -15+48=33 -16+45=29 -18+40=22 -20+36=16 -24+30=6
Calculate the sum for each pair.
a=-24 b=30
The solution is the pair that gives sum 6.
\left(x^{2}-24x\right)+\left(30x-720\right)
Rewrite x^{2}+6x-720 as \left(x^{2}-24x\right)+\left(30x-720\right).
x\left(x-24\right)+30\left(x-24\right)
Factor out x in the first and 30 in the second group.
\left(x-24\right)\left(x+30\right)
Factor out common term x-24 by using distributive property.
x=24 x=-30
To find equation solutions, solve x-24=0 and x+30=0.
x^{2}+6x-720=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-6±\sqrt{6^{2}-4\left(-720\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 6 for b, and -720 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-720\right)}}{2}
Square 6.
x=\frac{-6±\sqrt{36+2880}}{2}
Multiply -4 times -720.
x=\frac{-6±\sqrt{2916}}{2}
Add 36 to 2880.
x=\frac{-6±54}{2}
Take the square root of 2916.
x=\frac{48}{2}
Now solve the equation x=\frac{-6±54}{2} when ± is plus. Add -6 to 54.
x=24
Divide 48 by 2.
x=-\frac{60}{2}
Now solve the equation x=\frac{-6±54}{2} when ± is minus. Subtract 54 from -6.
x=-30
Divide -60 by 2.
x=24 x=-30
The equation is now solved.
x^{2}+6x-720=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+6x-720-\left(-720\right)=-\left(-720\right)
Add 720 to both sides of the equation.
x^{2}+6x=-\left(-720\right)
Subtracting -720 from itself leaves 0.
x^{2}+6x=720
Subtract -720 from 0.
x^{2}+6x+3^{2}=720+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+6x+9=720+9
Square 3.
x^{2}+6x+9=729
Add 720 to 9.
\left(x+3\right)^{2}=729
Factor x^{2}+6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{729}
Take the square root of both sides of the equation.
x+3=27 x+3=-27
Simplify.
x=24 x=-30
Subtract 3 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}