Solve for x (complex solution)
\left\{\begin{matrix}\\x=-9\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&y=3\end{matrix}\right.
Solve for y (complex solution)
\left\{\begin{matrix}\\y=3\text{, }&\text{unconditionally}\\y\in \mathrm{C}\text{, }&x=-9\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=-9\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&y=3\end{matrix}\right.
Solve for y
\left\{\begin{matrix}\\y=3\text{, }&\text{unconditionally}\\y\in \mathrm{R}\text{, }&x=-9\end{matrix}\right.
Graph
Share
Copied to clipboard
x^{2}+6x-27=x^{2}-xy+9x-9y
Use the distributive property to multiply x+9 by x-y.
x^{2}+6x-27-x^{2}=-xy+9x-9y
Subtract x^{2} from both sides.
6x-27=-xy+9x-9y
Combine x^{2} and -x^{2} to get 0.
6x-27+xy=9x-9y
Add xy to both sides.
6x-27+xy-9x=-9y
Subtract 9x from both sides.
-3x-27+xy=-9y
Combine 6x and -9x to get -3x.
-3x+xy=-9y+27
Add 27 to both sides.
\left(-3+y\right)x=-9y+27
Combine all terms containing x.
\left(y-3\right)x=27-9y
The equation is in standard form.
\frac{\left(y-3\right)x}{y-3}=\frac{27-9y}{y-3}
Divide both sides by -3+y.
x=\frac{27-9y}{y-3}
Dividing by -3+y undoes the multiplication by -3+y.
x=-9
Divide -9y+27 by -3+y.
x^{2}+6x-27=x^{2}-xy+9x-9y
Use the distributive property to multiply x+9 by x-y.
x^{2}-xy+9x-9y=x^{2}+6x-27
Swap sides so that all variable terms are on the left hand side.
-xy+9x-9y=x^{2}+6x-27-x^{2}
Subtract x^{2} from both sides.
-xy+9x-9y=6x-27
Combine x^{2} and -x^{2} to get 0.
-xy-9y=6x-27-9x
Subtract 9x from both sides.
-xy-9y=-3x-27
Combine 6x and -9x to get -3x.
\left(-x-9\right)y=-3x-27
Combine all terms containing y.
\frac{\left(-x-9\right)y}{-x-9}=\frac{-3x-27}{-x-9}
Divide both sides by -x-9.
y=\frac{-3x-27}{-x-9}
Dividing by -x-9 undoes the multiplication by -x-9.
y=3
Divide -3x-27 by -x-9.
x^{2}+6x-27=x^{2}-xy+9x-9y
Use the distributive property to multiply x+9 by x-y.
x^{2}+6x-27-x^{2}=-xy+9x-9y
Subtract x^{2} from both sides.
6x-27=-xy+9x-9y
Combine x^{2} and -x^{2} to get 0.
6x-27+xy=9x-9y
Add xy to both sides.
6x-27+xy-9x=-9y
Subtract 9x from both sides.
-3x-27+xy=-9y
Combine 6x and -9x to get -3x.
-3x+xy=-9y+27
Add 27 to both sides.
\left(-3+y\right)x=-9y+27
Combine all terms containing x.
\left(y-3\right)x=27-9y
The equation is in standard form.
\frac{\left(y-3\right)x}{y-3}=\frac{27-9y}{y-3}
Divide both sides by -3+y.
x=\frac{27-9y}{y-3}
Dividing by -3+y undoes the multiplication by -3+y.
x=-9
Divide -9y+27 by -3+y.
x^{2}+6x-27=x^{2}-xy+9x-9y
Use the distributive property to multiply x+9 by x-y.
x^{2}-xy+9x-9y=x^{2}+6x-27
Swap sides so that all variable terms are on the left hand side.
-xy+9x-9y=x^{2}+6x-27-x^{2}
Subtract x^{2} from both sides.
-xy+9x-9y=6x-27
Combine x^{2} and -x^{2} to get 0.
-xy-9y=6x-27-9x
Subtract 9x from both sides.
-xy-9y=-3x-27
Combine 6x and -9x to get -3x.
\left(-x-9\right)y=-3x-27
Combine all terms containing y.
\frac{\left(-x-9\right)y}{-x-9}=\frac{-3x-27}{-x-9}
Divide both sides by -x-9.
y=\frac{-3x-27}{-x-9}
Dividing by -x-9 undoes the multiplication by -x-9.
y=3
Divide -3x-27 by -x-9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}