Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=6 ab=1\left(-187\right)=-187
Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx-187. To find a and b, set up a system to be solved.
-1,187 -11,17
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -187.
-1+187=186 -11+17=6
Calculate the sum for each pair.
a=-11 b=17
The solution is the pair that gives sum 6.
\left(x^{2}-11x\right)+\left(17x-187\right)
Rewrite x^{2}+6x-187 as \left(x^{2}-11x\right)+\left(17x-187\right).
x\left(x-11\right)+17\left(x-11\right)
Factor out x in the first and 17 in the second group.
\left(x-11\right)\left(x+17\right)
Factor out common term x-11 by using distributive property.
x^{2}+6x-187=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-6±\sqrt{6^{2}-4\left(-187\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-6±\sqrt{36-4\left(-187\right)}}{2}
Square 6.
x=\frac{-6±\sqrt{36+748}}{2}
Multiply -4 times -187.
x=\frac{-6±\sqrt{784}}{2}
Add 36 to 748.
x=\frac{-6±28}{2}
Take the square root of 784.
x=\frac{22}{2}
Now solve the equation x=\frac{-6±28}{2} when ± is plus. Add -6 to 28.
x=11
Divide 22 by 2.
x=-\frac{34}{2}
Now solve the equation x=\frac{-6±28}{2} when ± is minus. Subtract 28 from -6.
x=-17
Divide -34 by 2.
x^{2}+6x-187=\left(x-11\right)\left(x-\left(-17\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 11 for x_{1} and -17 for x_{2}.
x^{2}+6x-187=\left(x-11\right)\left(x+17\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.