Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+6x+\frac{1}{16}x^{2}+3x+36-2\left(\frac{1}{4}x+6\right)=7
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\frac{1}{4}x+6\right)^{2}.
\frac{17}{16}x^{2}+6x+3x+36-2\left(\frac{1}{4}x+6\right)=7
Combine x^{2} and \frac{1}{16}x^{2} to get \frac{17}{16}x^{2}.
\frac{17}{16}x^{2}+9x+36-2\left(\frac{1}{4}x+6\right)=7
Combine 6x and 3x to get 9x.
\frac{17}{16}x^{2}+9x+36-\frac{1}{2}x-12=7
Use the distributive property to multiply -2 by \frac{1}{4}x+6.
\frac{17}{16}x^{2}+\frac{17}{2}x+36-12=7
Combine 9x and -\frac{1}{2}x to get \frac{17}{2}x.
\frac{17}{16}x^{2}+\frac{17}{2}x+24=7
Subtract 12 from 36 to get 24.
\frac{17}{16}x^{2}+\frac{17}{2}x+24-7=0
Subtract 7 from both sides.
\frac{17}{16}x^{2}+\frac{17}{2}x+17=0
Subtract 7 from 24 to get 17.
x=\frac{-\frac{17}{2}±\sqrt{\left(\frac{17}{2}\right)^{2}-4\times \frac{17}{16}\times 17}}{2\times \frac{17}{16}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{17}{16} for a, \frac{17}{2} for b, and 17 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{17}{2}±\sqrt{\frac{289}{4}-4\times \frac{17}{16}\times 17}}{2\times \frac{17}{16}}
Square \frac{17}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{17}{2}±\sqrt{\frac{289}{4}-\frac{17}{4}\times 17}}{2\times \frac{17}{16}}
Multiply -4 times \frac{17}{16}.
x=\frac{-\frac{17}{2}±\sqrt{\frac{289-289}{4}}}{2\times \frac{17}{16}}
Multiply -\frac{17}{4} times 17.
x=\frac{-\frac{17}{2}±\sqrt{0}}{2\times \frac{17}{16}}
Add \frac{289}{4} to -\frac{289}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{\frac{17}{2}}{2\times \frac{17}{16}}
Take the square root of 0.
x=-\frac{\frac{17}{2}}{\frac{17}{8}}
Multiply 2 times \frac{17}{16}.
x=-4
Divide -\frac{17}{2} by \frac{17}{8} by multiplying -\frac{17}{2} by the reciprocal of \frac{17}{8}.
x^{2}+6x+\frac{1}{16}x^{2}+3x+36-2\left(\frac{1}{4}x+6\right)=7
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\frac{1}{4}x+6\right)^{2}.
\frac{17}{16}x^{2}+6x+3x+36-2\left(\frac{1}{4}x+6\right)=7
Combine x^{2} and \frac{1}{16}x^{2} to get \frac{17}{16}x^{2}.
\frac{17}{16}x^{2}+9x+36-2\left(\frac{1}{4}x+6\right)=7
Combine 6x and 3x to get 9x.
\frac{17}{16}x^{2}+9x+36-\frac{1}{2}x-12=7
Use the distributive property to multiply -2 by \frac{1}{4}x+6.
\frac{17}{16}x^{2}+\frac{17}{2}x+36-12=7
Combine 9x and -\frac{1}{2}x to get \frac{17}{2}x.
\frac{17}{16}x^{2}+\frac{17}{2}x+24=7
Subtract 12 from 36 to get 24.
\frac{17}{16}x^{2}+\frac{17}{2}x=7-24
Subtract 24 from both sides.
\frac{17}{16}x^{2}+\frac{17}{2}x=-17
Subtract 24 from 7 to get -17.
\frac{\frac{17}{16}x^{2}+\frac{17}{2}x}{\frac{17}{16}}=-\frac{17}{\frac{17}{16}}
Divide both sides of the equation by \frac{17}{16}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{\frac{17}{2}}{\frac{17}{16}}x=-\frac{17}{\frac{17}{16}}
Dividing by \frac{17}{16} undoes the multiplication by \frac{17}{16}.
x^{2}+8x=-\frac{17}{\frac{17}{16}}
Divide \frac{17}{2} by \frac{17}{16} by multiplying \frac{17}{2} by the reciprocal of \frac{17}{16}.
x^{2}+8x=-16
Divide -17 by \frac{17}{16} by multiplying -17 by the reciprocal of \frac{17}{16}.
x^{2}+8x+4^{2}=-16+4^{2}
Divide 8, the coefficient of the x term, by 2 to get 4. Then add the square of 4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+8x+16=-16+16
Square 4.
x^{2}+8x+16=0
Add -16 to 16.
\left(x+4\right)^{2}=0
Factor x^{2}+8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x+4=0 x+4=0
Simplify.
x=-4 x=-4
Subtract 4 from both sides of the equation.
x=-4
The equation is now solved. Solutions are the same.