Solve for x
x=-81
x=16
Graph
Share
Copied to clipboard
a+b=65 ab=-1296
To solve the equation, factor x^{2}+65x-1296 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,1296 -2,648 -3,432 -4,324 -6,216 -8,162 -9,144 -12,108 -16,81 -18,72 -24,54 -27,48 -36,36
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -1296.
-1+1296=1295 -2+648=646 -3+432=429 -4+324=320 -6+216=210 -8+162=154 -9+144=135 -12+108=96 -16+81=65 -18+72=54 -24+54=30 -27+48=21 -36+36=0
Calculate the sum for each pair.
a=-16 b=81
The solution is the pair that gives sum 65.
\left(x-16\right)\left(x+81\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=16 x=-81
To find equation solutions, solve x-16=0 and x+81=0.
a+b=65 ab=1\left(-1296\right)=-1296
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-1296. To find a and b, set up a system to be solved.
-1,1296 -2,648 -3,432 -4,324 -6,216 -8,162 -9,144 -12,108 -16,81 -18,72 -24,54 -27,48 -36,36
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -1296.
-1+1296=1295 -2+648=646 -3+432=429 -4+324=320 -6+216=210 -8+162=154 -9+144=135 -12+108=96 -16+81=65 -18+72=54 -24+54=30 -27+48=21 -36+36=0
Calculate the sum for each pair.
a=-16 b=81
The solution is the pair that gives sum 65.
\left(x^{2}-16x\right)+\left(81x-1296\right)
Rewrite x^{2}+65x-1296 as \left(x^{2}-16x\right)+\left(81x-1296\right).
x\left(x-16\right)+81\left(x-16\right)
Factor out x in the first and 81 in the second group.
\left(x-16\right)\left(x+81\right)
Factor out common term x-16 by using distributive property.
x=16 x=-81
To find equation solutions, solve x-16=0 and x+81=0.
x^{2}+65x-1296=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-65±\sqrt{65^{2}-4\left(-1296\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 65 for b, and -1296 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-65±\sqrt{4225-4\left(-1296\right)}}{2}
Square 65.
x=\frac{-65±\sqrt{4225+5184}}{2}
Multiply -4 times -1296.
x=\frac{-65±\sqrt{9409}}{2}
Add 4225 to 5184.
x=\frac{-65±97}{2}
Take the square root of 9409.
x=\frac{32}{2}
Now solve the equation x=\frac{-65±97}{2} when ± is plus. Add -65 to 97.
x=16
Divide 32 by 2.
x=-\frac{162}{2}
Now solve the equation x=\frac{-65±97}{2} when ± is minus. Subtract 97 from -65.
x=-81
Divide -162 by 2.
x=16 x=-81
The equation is now solved.
x^{2}+65x-1296=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+65x-1296-\left(-1296\right)=-\left(-1296\right)
Add 1296 to both sides of the equation.
x^{2}+65x=-\left(-1296\right)
Subtracting -1296 from itself leaves 0.
x^{2}+65x=1296
Subtract -1296 from 0.
x^{2}+65x+\left(\frac{65}{2}\right)^{2}=1296+\left(\frac{65}{2}\right)^{2}
Divide 65, the coefficient of the x term, by 2 to get \frac{65}{2}. Then add the square of \frac{65}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+65x+\frac{4225}{4}=1296+\frac{4225}{4}
Square \frac{65}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+65x+\frac{4225}{4}=\frac{9409}{4}
Add 1296 to \frac{4225}{4}.
\left(x+\frac{65}{2}\right)^{2}=\frac{9409}{4}
Factor x^{2}+65x+\frac{4225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{65}{2}\right)^{2}}=\sqrt{\frac{9409}{4}}
Take the square root of both sides of the equation.
x+\frac{65}{2}=\frac{97}{2} x+\frac{65}{2}=-\frac{97}{2}
Simplify.
x=16 x=-81
Subtract \frac{65}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}