Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-2x+20=60
Combine 5x and -7x to get -2x.
x^{2}-2x+20-60=0
Subtract 60 from both sides.
x^{2}-2x-40=0
Subtract 60 from 20 to get -40.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-40\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -2 for b, and -40 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-40\right)}}{2}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4+160}}{2}
Multiply -4 times -40.
x=\frac{-\left(-2\right)±\sqrt{164}}{2}
Add 4 to 160.
x=\frac{-\left(-2\right)±2\sqrt{41}}{2}
Take the square root of 164.
x=\frac{2±2\sqrt{41}}{2}
The opposite of -2 is 2.
x=\frac{2\sqrt{41}+2}{2}
Now solve the equation x=\frac{2±2\sqrt{41}}{2} when ± is plus. Add 2 to 2\sqrt{41}.
x=\sqrt{41}+1
Divide 2+2\sqrt{41} by 2.
x=\frac{2-2\sqrt{41}}{2}
Now solve the equation x=\frac{2±2\sqrt{41}}{2} when ± is minus. Subtract 2\sqrt{41} from 2.
x=1-\sqrt{41}
Divide 2-2\sqrt{41} by 2.
x=\sqrt{41}+1 x=1-\sqrt{41}
The equation is now solved.
x^{2}-2x+20=60
Combine 5x and -7x to get -2x.
x^{2}-2x=60-20
Subtract 20 from both sides.
x^{2}-2x=40
Subtract 20 from 60 to get 40.
x^{2}-2x+1=40+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=41
Add 40 to 1.
\left(x-1\right)^{2}=41
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{41}
Take the square root of both sides of the equation.
x-1=\sqrt{41} x-1=-\sqrt{41}
Simplify.
x=\sqrt{41}+1 x=1-\sqrt{41}
Add 1 to both sides of the equation.