Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+9x=45
Combine 5x and 4x to get 9x.
x^{2}+9x-45=0
Subtract 45 from both sides.
x=\frac{-9±\sqrt{9^{2}-4\left(-45\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 9 for b, and -45 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9±\sqrt{81-4\left(-45\right)}}{2}
Square 9.
x=\frac{-9±\sqrt{81+180}}{2}
Multiply -4 times -45.
x=\frac{-9±\sqrt{261}}{2}
Add 81 to 180.
x=\frac{-9±3\sqrt{29}}{2}
Take the square root of 261.
x=\frac{3\sqrt{29}-9}{2}
Now solve the equation x=\frac{-9±3\sqrt{29}}{2} when ± is plus. Add -9 to 3\sqrt{29}.
x=\frac{-3\sqrt{29}-9}{2}
Now solve the equation x=\frac{-9±3\sqrt{29}}{2} when ± is minus. Subtract 3\sqrt{29} from -9.
x=\frac{3\sqrt{29}-9}{2} x=\frac{-3\sqrt{29}-9}{2}
The equation is now solved.
x^{2}+9x=45
Combine 5x and 4x to get 9x.
x^{2}+9x+\left(\frac{9}{2}\right)^{2}=45+\left(\frac{9}{2}\right)^{2}
Divide 9, the coefficient of the x term, by 2 to get \frac{9}{2}. Then add the square of \frac{9}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+9x+\frac{81}{4}=45+\frac{81}{4}
Square \frac{9}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+9x+\frac{81}{4}=\frac{261}{4}
Add 45 to \frac{81}{4}.
\left(x+\frac{9}{2}\right)^{2}=\frac{261}{4}
Factor x^{2}+9x+\frac{81}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{9}{2}\right)^{2}}=\sqrt{\frac{261}{4}}
Take the square root of both sides of the equation.
x+\frac{9}{2}=\frac{3\sqrt{29}}{2} x+\frac{9}{2}=-\frac{3\sqrt{29}}{2}
Simplify.
x=\frac{3\sqrt{29}-9}{2} x=\frac{-3\sqrt{29}-9}{2}
Subtract \frac{9}{2} from both sides of the equation.