Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}+570x-6610=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-570±\sqrt{570^{2}-4\left(-6610\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 570 for b, and -6610 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-570±\sqrt{324900-4\left(-6610\right)}}{2}
Square 570.
x=\frac{-570±\sqrt{324900+26440}}{2}
Multiply -4 times -6610.
x=\frac{-570±\sqrt{351340}}{2}
Add 324900 to 26440.
x=\frac{-570±2\sqrt{87835}}{2}
Take the square root of 351340.
x=\frac{2\sqrt{87835}-570}{2}
Now solve the equation x=\frac{-570±2\sqrt{87835}}{2} when ± is plus. Add -570 to 2\sqrt{87835}.
x=\sqrt{87835}-285
Divide -570+2\sqrt{87835} by 2.
x=\frac{-2\sqrt{87835}-570}{2}
Now solve the equation x=\frac{-570±2\sqrt{87835}}{2} when ± is minus. Subtract 2\sqrt{87835} from -570.
x=-\sqrt{87835}-285
Divide -570-2\sqrt{87835} by 2.
x=\sqrt{87835}-285 x=-\sqrt{87835}-285
The equation is now solved.
x^{2}+570x-6610=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+570x-6610-\left(-6610\right)=-\left(-6610\right)
Add 6610 to both sides of the equation.
x^{2}+570x=-\left(-6610\right)
Subtracting -6610 from itself leaves 0.
x^{2}+570x=6610
Subtract -6610 from 0.
x^{2}+570x+285^{2}=6610+285^{2}
Divide 570, the coefficient of the x term, by 2 to get 285. Then add the square of 285 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+570x+81225=6610+81225
Square 285.
x^{2}+570x+81225=87835
Add 6610 to 81225.
\left(x+285\right)^{2}=87835
Factor x^{2}+570x+81225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+285\right)^{2}}=\sqrt{87835}
Take the square root of both sides of the equation.
x+285=\sqrt{87835} x+285=-\sqrt{87835}
Simplify.
x=\sqrt{87835}-285 x=-\sqrt{87835}-285
Subtract 285 from both sides of the equation.
x^{2}+570x-6610=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-570±\sqrt{570^{2}-4\left(-6610\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 570 for b, and -6610 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-570±\sqrt{324900-4\left(-6610\right)}}{2}
Square 570.
x=\frac{-570±\sqrt{324900+26440}}{2}
Multiply -4 times -6610.
x=\frac{-570±\sqrt{351340}}{2}
Add 324900 to 26440.
x=\frac{-570±2\sqrt{87835}}{2}
Take the square root of 351340.
x=\frac{2\sqrt{87835}-570}{2}
Now solve the equation x=\frac{-570±2\sqrt{87835}}{2} when ± is plus. Add -570 to 2\sqrt{87835}.
x=\sqrt{87835}-285
Divide -570+2\sqrt{87835} by 2.
x=\frac{-2\sqrt{87835}-570}{2}
Now solve the equation x=\frac{-570±2\sqrt{87835}}{2} when ± is minus. Subtract 2\sqrt{87835} from -570.
x=-\sqrt{87835}-285
Divide -570-2\sqrt{87835} by 2.
x=\sqrt{87835}-285 x=-\sqrt{87835}-285
The equation is now solved.
x^{2}+570x-6610=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+570x-6610-\left(-6610\right)=-\left(-6610\right)
Add 6610 to both sides of the equation.
x^{2}+570x=-\left(-6610\right)
Subtracting -6610 from itself leaves 0.
x^{2}+570x=6610
Subtract -6610 from 0.
x^{2}+570x+285^{2}=6610+285^{2}
Divide 570, the coefficient of the x term, by 2 to get 285. Then add the square of 285 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+570x+81225=6610+81225
Square 285.
x^{2}+570x+81225=87835
Add 6610 to 81225.
\left(x+285\right)^{2}=87835
Factor x^{2}+570x+81225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+285\right)^{2}}=\sqrt{87835}
Take the square root of both sides of the equation.
x+285=\sqrt{87835} x+285=-\sqrt{87835}
Simplify.
x=\sqrt{87835}-285 x=-\sqrt{87835}-285
Subtract 285 from both sides of the equation.