Solve for x (complex solution)
x=\sqrt{87835}-285\approx 11.369701555
x=-\left(\sqrt{87835}+285\right)\approx -581.369701555
Solve for x
x=\sqrt{87835}-285\approx 11.369701555
x=-\sqrt{87835}-285\approx -581.369701555
Graph
Share
Copied to clipboard
x^{2}+570x-6610=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-570±\sqrt{570^{2}-4\left(-6610\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 570 for b, and -6610 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-570±\sqrt{324900-4\left(-6610\right)}}{2}
Square 570.
x=\frac{-570±\sqrt{324900+26440}}{2}
Multiply -4 times -6610.
x=\frac{-570±\sqrt{351340}}{2}
Add 324900 to 26440.
x=\frac{-570±2\sqrt{87835}}{2}
Take the square root of 351340.
x=\frac{2\sqrt{87835}-570}{2}
Now solve the equation x=\frac{-570±2\sqrt{87835}}{2} when ± is plus. Add -570 to 2\sqrt{87835}.
x=\sqrt{87835}-285
Divide -570+2\sqrt{87835} by 2.
x=\frac{-2\sqrt{87835}-570}{2}
Now solve the equation x=\frac{-570±2\sqrt{87835}}{2} when ± is minus. Subtract 2\sqrt{87835} from -570.
x=-\sqrt{87835}-285
Divide -570-2\sqrt{87835} by 2.
x=\sqrt{87835}-285 x=-\sqrt{87835}-285
The equation is now solved.
x^{2}+570x-6610=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+570x-6610-\left(-6610\right)=-\left(-6610\right)
Add 6610 to both sides of the equation.
x^{2}+570x=-\left(-6610\right)
Subtracting -6610 from itself leaves 0.
x^{2}+570x=6610
Subtract -6610 from 0.
x^{2}+570x+285^{2}=6610+285^{2}
Divide 570, the coefficient of the x term, by 2 to get 285. Then add the square of 285 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+570x+81225=6610+81225
Square 285.
x^{2}+570x+81225=87835
Add 6610 to 81225.
\left(x+285\right)^{2}=87835
Factor x^{2}+570x+81225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+285\right)^{2}}=\sqrt{87835}
Take the square root of both sides of the equation.
x+285=\sqrt{87835} x+285=-\sqrt{87835}
Simplify.
x=\sqrt{87835}-285 x=-\sqrt{87835}-285
Subtract 285 from both sides of the equation.
x^{2}+570x-6610=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-570±\sqrt{570^{2}-4\left(-6610\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 570 for b, and -6610 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-570±\sqrt{324900-4\left(-6610\right)}}{2}
Square 570.
x=\frac{-570±\sqrt{324900+26440}}{2}
Multiply -4 times -6610.
x=\frac{-570±\sqrt{351340}}{2}
Add 324900 to 26440.
x=\frac{-570±2\sqrt{87835}}{2}
Take the square root of 351340.
x=\frac{2\sqrt{87835}-570}{2}
Now solve the equation x=\frac{-570±2\sqrt{87835}}{2} when ± is plus. Add -570 to 2\sqrt{87835}.
x=\sqrt{87835}-285
Divide -570+2\sqrt{87835} by 2.
x=\frac{-2\sqrt{87835}-570}{2}
Now solve the equation x=\frac{-570±2\sqrt{87835}}{2} when ± is minus. Subtract 2\sqrt{87835} from -570.
x=-\sqrt{87835}-285
Divide -570-2\sqrt{87835} by 2.
x=\sqrt{87835}-285 x=-\sqrt{87835}-285
The equation is now solved.
x^{2}+570x-6610=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+570x-6610-\left(-6610\right)=-\left(-6610\right)
Add 6610 to both sides of the equation.
x^{2}+570x=-\left(-6610\right)
Subtracting -6610 from itself leaves 0.
x^{2}+570x=6610
Subtract -6610 from 0.
x^{2}+570x+285^{2}=6610+285^{2}
Divide 570, the coefficient of the x term, by 2 to get 285. Then add the square of 285 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+570x+81225=6610+81225
Square 285.
x^{2}+570x+81225=87835
Add 6610 to 81225.
\left(x+285\right)^{2}=87835
Factor x^{2}+570x+81225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+285\right)^{2}}=\sqrt{87835}
Take the square root of both sides of the equation.
x+285=\sqrt{87835} x+285=-\sqrt{87835}
Simplify.
x=\sqrt{87835}-285 x=-\sqrt{87835}-285
Subtract 285 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}