Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=52 ab=1\times 100=100
Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx+100. To find a and b, set up a system to be solved.
1,100 2,50 4,25 5,20 10,10
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 100.
1+100=101 2+50=52 4+25=29 5+20=25 10+10=20
Calculate the sum for each pair.
a=2 b=50
The solution is the pair that gives sum 52.
\left(x^{2}+2x\right)+\left(50x+100\right)
Rewrite x^{2}+52x+100 as \left(x^{2}+2x\right)+\left(50x+100\right).
x\left(x+2\right)+50\left(x+2\right)
Factor out x in the first and 50 in the second group.
\left(x+2\right)\left(x+50\right)
Factor out common term x+2 by using distributive property.
x^{2}+52x+100=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-52±\sqrt{52^{2}-4\times 100}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-52±\sqrt{2704-4\times 100}}{2}
Square 52.
x=\frac{-52±\sqrt{2704-400}}{2}
Multiply -4 times 100.
x=\frac{-52±\sqrt{2304}}{2}
Add 2704 to -400.
x=\frac{-52±48}{2}
Take the square root of 2304.
x=-\frac{4}{2}
Now solve the equation x=\frac{-52±48}{2} when ± is plus. Add -52 to 48.
x=-2
Divide -4 by 2.
x=-\frac{100}{2}
Now solve the equation x=\frac{-52±48}{2} when ± is minus. Subtract 48 from -52.
x=-50
Divide -100 by 2.
x^{2}+52x+100=\left(x-\left(-2\right)\right)\left(x-\left(-50\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -2 for x_{1} and -50 for x_{2}.
x^{2}+52x+100=\left(x+2\right)\left(x+50\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.