Solve for x
x=\frac{8\sqrt{5911}}{23}-26\approx 0.741922795
x=-\frac{8\sqrt{5911}}{23}-26\approx -52.741922795
Graph
Share
Copied to clipboard
x^{2}+52x=\frac{900}{23}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x^{2}+52x-\frac{900}{23}=\frac{900}{23}-\frac{900}{23}
Subtract \frac{900}{23} from both sides of the equation.
x^{2}+52x-\frac{900}{23}=0
Subtracting \frac{900}{23} from itself leaves 0.
x=\frac{-52±\sqrt{52^{2}-4\left(-\frac{900}{23}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 52 for b, and -\frac{900}{23} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-52±\sqrt{2704-4\left(-\frac{900}{23}\right)}}{2}
Square 52.
x=\frac{-52±\sqrt{2704+\frac{3600}{23}}}{2}
Multiply -4 times -\frac{900}{23}.
x=\frac{-52±\sqrt{\frac{65792}{23}}}{2}
Add 2704 to \frac{3600}{23}.
x=\frac{-52±\frac{16\sqrt{5911}}{23}}{2}
Take the square root of \frac{65792}{23}.
x=\frac{\frac{16\sqrt{5911}}{23}-52}{2}
Now solve the equation x=\frac{-52±\frac{16\sqrt{5911}}{23}}{2} when ± is plus. Add -52 to \frac{16\sqrt{5911}}{23}.
x=\frac{8\sqrt{5911}}{23}-26
Divide -52+\frac{16\sqrt{5911}}{23} by 2.
x=\frac{-\frac{16\sqrt{5911}}{23}-52}{2}
Now solve the equation x=\frac{-52±\frac{16\sqrt{5911}}{23}}{2} when ± is minus. Subtract \frac{16\sqrt{5911}}{23} from -52.
x=-\frac{8\sqrt{5911}}{23}-26
Divide -52-\frac{16\sqrt{5911}}{23} by 2.
x=\frac{8\sqrt{5911}}{23}-26 x=-\frac{8\sqrt{5911}}{23}-26
The equation is now solved.
x^{2}+52x=\frac{900}{23}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+52x+26^{2}=\frac{900}{23}+26^{2}
Divide 52, the coefficient of the x term, by 2 to get 26. Then add the square of 26 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+52x+676=\frac{900}{23}+676
Square 26.
x^{2}+52x+676=\frac{16448}{23}
Add \frac{900}{23} to 676.
\left(x+26\right)^{2}=\frac{16448}{23}
Factor x^{2}+52x+676. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+26\right)^{2}}=\sqrt{\frac{16448}{23}}
Take the square root of both sides of the equation.
x+26=\frac{8\sqrt{5911}}{23} x+26=-\frac{8\sqrt{5911}}{23}
Simplify.
x=\frac{8\sqrt{5911}}{23}-26 x=-\frac{8\sqrt{5911}}{23}-26
Subtract 26 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}